Effects of water-soluble sulfur-containing phenolic antioxidants sodium 3-(3'-tert-butyl-4'- hydroxyphenyl)propyl thiosulfonate (TS-13) and potassium 3,5-dimethyl-4-hydroxybenzyl thioetanoate (BEP-11-K) on chemoresistance in tumor cells were studied. Explored phenolic antioxidants were found to cause oppositely directed changes in the redox properties and chemoresistance in tumor cells. It was established that BEP-11-K increases the redox buffer capacity and tumor cells resistance to doxorubicin. TS-13 reduces the redox buffer capacity, which leads to a decrease in the chemoresistance in tumor cells. The obtained results indicate the crucial role of cell redox properties changes in the development of tumor cell drug resistance.
chemoresistance, sulfur-containing phenolic antioxidants, reactive oxygen species, tumor cells, redox state
1. Trachootham D., Alexandre J., Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, vol. 8, pp. 579-591.
2. Martinovich G.G., Martinovich I.V., Golubeva E.N., Cherenkevich S.N., Demidchik Yu.E., Gain Yu.M., Vladimirskaya T.E., Luschik M.L. Redoks-biotehnologii kak osnova dlya novoy strategii v protivoopuholevoy terapii. Izvestiya NAN Belarusi. Seriya medicinskih nauk, 2012, № 2, c. 85-104.
3. Wondrak G.T. Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid. Redox Signal., 2009, vol. 11, pp. 3013-3069.
4. Jones D.P. Redox sensing: orthogonal control in cell cycle and apoptosis signaling. J. of Internal Medicine, 2010, vol. 268, pp. 432-448.
5. Martinovich G.G., Martinovich I.V., Cherenkevich S.N. Redox regulation of cellular processes: a biophysical model and experiment. Biophysics, 2011, vol. 56, pp. 444-451.
6. Martinovich G.G., Martinovich I.V., Zenkov N.K., Menshchikova E.B., Kandalintseva N.V., Cherenkevich S.N. Phenolic antioxidant TS-13 regulating ARE-driven genes induces tumor cell death by a mitochondria-dependent pathway. Biophysics, 2015, vol. 60, pp. 94-100.
7. Martinovich G.G., Cherenkevich S.N. Okislitel'no-vosstanovitel'nye processy v kletkah. Minsk: BGU, 2008, 159 s. [Martinovich G.G., Cherenkevich S.N. Redox processes in cells. Minsk, BSU, 2008, 159 p. (In Russ.)]
8. Martinovich G.G., Martinovich I.V., Cherenkevich S.N. Kolichestvennaya harakteristika redoks-sostoyaniya eritrocitov. Biofizika, 2008, t. 53, s. 618-623. [Martinovich G.G., Martinovich I.V., Cherenkevich S.N. Quantitative characteristic of the redox state of erythrocytes. Biofizika, 2008, vol. 53, pp. 618-623. (In Russ.)]
9. Martinovich G.G., Martinovich I.V., Cherenkevich S.N., Sauer H. Redox buffer capacity of the cell: theoretical and experimental approach. Cell Biochem. Biophys., 2010, vol. 58, pp. 75-83.
10. Martinovich G.G., Martinovich I.V., Vcherashniaya A.V., Shadyro O.I., Cherenkevich S.N. Thymoquinone, a biologically active component of Nigella sativa, induces mitochondrial production of reactive oxygen species and programmed death of tumor cells. Biophysics, 2016, vol. 61, pp. 963-970.
11. Liberti M.V., Locasale J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci., 2016, vol. 41, pp. 211-218.
12. Milkovic L., Zarkovic N., Saso L. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol., 2017, vol. 12, pp. 727-732.