The distinctive features of firefly luciferase bioluminescence are the complex spectral changes of the form and symbol 108 \f "Symbol" \s 12lмакс of bioluminescence under variation of pH, temperature, and enzyme structure. Analysis of the literature data and the own results of the authors on the nature of the emitter in luciferin-luciferase system leads to the conclusion that the keto-enol tautomerism of oxyluciferin molecule the most authentically explains observable complex spectral changes. Each molecule of luciferase can contain only one molecule of the emitter at the moment of bioluminescence. Hence, the emitter can be considered as the intramolecular label, characterizing the properties of its microenvironment in the active center of the enzyme. Superposition of two or three forms of the emitter recorded in bioluminescence spectra indicates that various conformational forms of the enzyme co-exist in the reaction medium, that are in a dynamic equilibrium, each of which generates one of the emitter forms.
bioluminescence, firefly luciferase, keno-enol tautomerism, oxyluciferin
1. Ugarova N.N. Luciferase of Luciola mingrelica fireflies. Kinetics and regulation mechanism. J. Biolum. Chemilum., 1989, vol. 4, pp. 406-418.
2. Devine J.H., Kutuzova G.D., Green V.A., Ugarova N.N., Baldwin T.O. Luciferase from the East European firefly Luciola mingrelica: Cloning and nucleotide sequence of the cDNA, overexpression in Escherichia coli and purification of the enzyme. Biochim. Biophys. Acta, Gene Struct. Expression, 1993, vol. 1173, pp. 121-132.
3. Hastings J.W., Johnson C.H. Bioluminescence and chemiluminescence. Meth. Enzymol., 2003, vol. 360, pp. 75-104.; DOI: https://doi.org/10.1016/S0076-6879(03)60107-2; EDN: https://elibrary.ru/LWJQDN
4. Seliger H.H., McElroy W.D. Spectral emission and quantum yield of firefly bioluminescence. Arch. Biochem. Biophys., 1960, vol. 88, pp. 136-141.
5. Ando Y., Niwa K., Yamada N., Enomoto T., Irie T., Kubota H., Ohmiya Y., Akiyama H. Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nature Photon., 2008, vol. 2, pp. 44-47.; DOI: https://doi.org/10.1038/nphoton.2007.251; EDN: https://elibrary.ru/MKULJH
6. Ugarova N.N., Brovko L.Yu. Protein structure and bioluminescent spectra for firefly bioluminescence. Luminescence, 2002, vol. 17, pp. 321-330.; DOI: https://doi.org/10.1002/bio.688; EDN: https://elibrary.ru/LHFNOT
7. Viviani V.R. The origin, diversity, and structure function relationships of insect luciferases. Cell Mol. Life Sci., 2002, vol. 59, pp. 1833-1850.
8. White E.H., Rapaport E., Hopkins T.A., Seliger H.H. Chemi- and bioluminescence of firefly luciferin. J. Am. Chem. Soc., 1969, vol. 91, pp. 2178-2180.
9. MacCapra F., Gilfoyle D.J., Young D.W., Church N.J., Spencer P. The chemical origin of color differences in beetle bioluminescence. Proceedings of the 8th International Symposium on Bioluminescence and Chemiluminescence, 1994, pp. 387-391.
10. Nakatani N., Hasegawa J.y., Nakatsuji H. Red light in chemiluminescence and yellow-green light in bioluminescence: color-tuning mechanism of firefly, Photinus pyralis, studied by the symmetry-adapted cluster-configuration interaction method. J. Am. Chem. Soc., 2007, vol. 129, pp. 8756-8765.
11. Yang T., Goddard J.D. Predictions of the geometries and fluorescence emission energies of oxyluciferins. J. Phys. Chem. A, 2007, vol. 111, pp. 4489-4497.
12. Shimomura O. Bioluminescence: Chemical principles and applications. World Scientific, Singapure, 2008, pp. 151-153.
13. Branchini B.R., Southworth T.L., Murtiashaw M.H., Magyar R.A., Gonzalez S.A., Ruggiero M.C., Stroh J.G. An alternative mechanism of bioluminescence color determination in firefly luciferase. Biochemistry, 2004, vol. 43, pp. 7255-7262.; DOI: https://doi.org/10.1021/bi036175d; EDN: https://elibrary.ru/MBMGNF
14. Gandelman O.A., Brovko L.Y., Ugarova N.N., Chikishev A.Y., Shkurimov A.P. Oxyluciferin fluorescence is a model of native bioluminescence in the firefly luciferin--luciferase system. J. Photochem. Photobiol. B., 1993, vol. 19, pp. 187-191.; DOI: https://doi.org/10.1016/1011-1344(93)87083-Y; EDN: https://elibrary.ru/PSYDUT
15. Leont’eva O.V., Vlasova T.N., Ugarova N. N. Dimethyl and monomethyloxyluciferins as analogs of the product of the bioluminescence reaction catalyzed by firefly luciferase. Biochemistry (Moscow), 2006, vol. 71, no.1, pp. 51-55.; DOI: https://doi.org/10.1134/S000629790601007X; EDN: https://elibrary.ru/LJOGIL
16. Ugarova N.N. Interaction of firefly luciferase with substrates and their analogs: a study using fluorescence spectroscopy methods. Photochem. Photobiol. Sci., 2008, vol. 7, pp. 218-227.; DOI: https://doi.org/10.1039/b712895a; EDN: https://elibrary.ru/LLDRTN
17. daSilva L.P., Simkovitch R., Huppert D., daSilva J.C.G.E., Oxyluciferin photoacidity: the missing element for solving the keto-enol mystery? Chem.Phys.Chem., 2013, vol. 14, pp. 3441-3446.
18. Solntsev K.M., Laptenok S.P., Naumov P. Photoinduced dynamics of oxyluciferin analogues: unusual enol. “Super”photoacidity and evidence for keto-enol isomerization. J. Am. Chem. Soc., 2012, vol. 134, pp.16452-16455.
19. Naumov P., Ozawa Y., Ohkubo K., Fukuzumi S. Structure and Spectroscopy of Oxyluciferin, the Light Emitter of the Firefly Bioluminescence. J.Am.Chem. Soc., 2009, vol. 131, pp. 11590-11605.; DOI: https://doi.org/10.1021/ja904309q; EDN: https://elibrary.ru/MZEEVD
20. Rebarz M., Kurovec B.-M., Maltsev O.V., Ruckebusch C., Hintermann L., Naumov P., Sliwa M. Deciphering the protonation and tautomeric equilibria of firefly oxyluciferin in solution. Chem. Sci., 2013, vol. 4, pp. 3803-3809.; DOI: https://doi.org/10.1039/c3sc50715g; EDN: https://elibrary.ru/RIYWWL
21. Navizet I., Liu Y.-J., Ferre, N.,Xiao H.-Y., Fang W.-H., Lindh R. Color-Tuning Mechanism of Firefly Investigated by Multi-Configurational Perturbation Method. J. Am.Chem.Soc., 2010, vol. 132, pp. 706-712.; DOI: https://doi.org/10.1021/ja908051h; EDN: https://elibrary.ru/MYNIYD
22. Snellenburg J.J., Laptenok S. P., DeSa R. J., Naumov P., Solntsev K.M. Excited-state dynamics of oxyluciferin in firefly luciferase. J. Am. Chem. Soc., 2016, vol. 138, pp. 16252-16258.; DOI: https://doi.org/10.1021/jacs.6b05078; EDN: https://elibrary.ru/YWCLZP
23. Nakatsu T., Ichiyama S., Hiratake J., Saldanha A., Kobashi N., Sakata K., Kato H. Structural basis for the spectral difference in luciferase bioluminescence. Nature, 2006. vol. 440. pp. 372-376.
24. Støchkel K., Hansen C. N., Houmøller J., Nielsen L. M., Anggara K., Linares M., Norman P., Nogueira F., Maltsev O.V., Hintermann L., Nielsen S.B., Naumov P., Milne B.F. On the Influence of Water on the Electronic Structure of Firefly Oxyluciferin Anions from Absorption Spectroscopy of Bare and Monohydrated Ions in Vacuo. J. Am.Chem. Soc., 2013, vol. 135, pp. 6485-6493.
25. Ugarova N.N., Maloshenok L.G., Uporov I.V., Koksharov M.I. Bioluminescence spectra of native and mutant firefly luciferases as a function of pH. Biochemistry (Moscow), 2005, vol. 70, no. 11, pp. 1262-1267.; DOI: https://doi.org/10.1007/s10541-005-0257-2; EDN: https://elibrary.ru/LJJCCV