INVESTIGATIONS OF ACCESSIBILITY OF T2/T3 COPPER CENTRE OF TWO-DOMAIN LACCASE FROM STREPTOMYCES GRISEOFLAVUS AC-993
Abstract and keywords
Abstract (English):
Laccases (EC 1.10.3.2) are "blue" copper-containing oxidoreductases widely distributed and highly important for biotechnology. The substrates of these enzymes are various phenolic compounds. Laccases are found in higher plants, some insects, fungi and bacteria. Laccases contain four copper atoms organized in 3 sites: Т1, Т2 и Т3. In bacteria, along with three-domain laccases, there are two-domain laccases (2DLac), which have a number of functional advantages. 2DLac are active at neutral and alkaline pH values, have increased thermostability and are resistant to the action of various inhibitors. The catalytic mechanism of the two-domain laccase is intensively studied; however, the principles of substrate/product transport are still not fully understood. This paper presents a comparative analysis of the catalytic activity and crystal structures of recombinant 2DLac from Streptomyces griseoflavus Ac-993 and its mutant forms with His165 substitutions on Phe and Ala. His165 is conservative for 2Dlac, it belongs to the second coordination sphere and is located near the surface of the protein. We assume that the movement of the imidazole ring His165 can "open" or "close" one of the substrate-product channels leading to the T2 /T3 center of laccase from S. griseoflavus.

Keywords:
two-domain laccases, Streptomyces griseoflavus, crystal structures, T2 / T3 center, substrates channels
Text
Text (PDF): Read Download
References

1. Solomon E.I., Sundaram U.M., Machonkin T.E. Multicopper Oxidases and Oxygenases. Chem. Rev., 1996, vol. 96, pp. 2563-2606.

2. Bento I., Martins L.O., Gato Lopes G., Arménia Carrondo M., Lindley P.F. Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalt. Trans., 2005 vol. 4, p. 3507, DOIhttps://doi.org/10.1039/b504806k.

3. Skálová T., Dohnálek J., Østergaard L.H., Østergaard P.R., Kolenko P., Dušková J., et al. The Structure of the Small Laccase from Streptomyces coelicolor Reveals a Link between Laccases and Nitrite Reductases. J. Mol. Biol., 2009, vol. 385, pp. 165-1178, DOI:https://doi.org/10.1016/j.jmb.2008.11.024.

4. Trubitsina L.I., Tishchenko S.V., Gabdulkhakov A.G., Lisov A.V., Zakharova M.V., Leontievsky A.A. Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes. Biochimie, 2015, vol. 112, pp. 151-159, DOI:https://doi.org/10.1016/j.biochi.2015.03.005.

5. Tishchenko S., Gabdulkhakov A., Trubitsina L., Lisov A., Zakharova M., Leontievsky A. Crystallization and X-ray diffraction studies of a two-domain laccase from Streptomyces griseoflavus. Acta Crystallogr. Sect. Struct. Biol. Commun., 2015, vol. 71, pp. 1200-1204, DOI:https://doi.org/10.1107/S2053230X15014375.

6. Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D Biol. Crystallogr., 2010, vol. 66, pp. 133-144, DOI:https://doi.org/10.1107/S0907444909047374.

7. McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. Phaser crystallographic software. J. Appl. Crystallogr., 2007, vol. 40, pp. 658-674, DOI:https://doi.org/10.1107/S0021889807021206.

8. Murshudov G.N., Skubák P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Biol. Crystallogr., 2011, vol. 67, pp. 355-367, DOIhttps://doi.org/10.1107/S0907444911001314.

9. Adams P.D., Afonine P.V., Bunkóczi G., Chen V.B., Davis I.W., Echols N., et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr., 2010, vol. 66, pp. 213-221, DOI:https://doi.org/10.1107/S0907444909052925.

10. Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot, Acta Crystallogr. Sect. D Biol. Crystallogr., 2010, vol. 66, pp. 486-501, DOI:https://doi.org/10.1107/S0907444910007493.

11. Pavelka A., Sebestova E., Kozlikova B., Brezovsky J., Sochor J., Damborsky J. CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules, IEEE. ACM Trans. Comput. Biol. Bioinforma, 2016, vol. 13, pp. 505-517, DOI:https://doi.org/10.1109/TCBB.2015.2459680.

12. Vaguine A.A., Richelle J., Wodak S.J., et al. SFCHECK : a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. Sect. D Biol. Crystallogr., 1999, vol. 55, pp. 191-205, DOIhttps://doi.org/10.1107/S0907444998006684.

13. Gabdulkhakov A.G., Kostareva O.S., Kolyadenko I.A., Mikhaylina A.O., Trubitsina L.I., Tishchenko S.V. Incorporation of Copper Ions into T2/T3 Centers of Two-Domain Laccases. Mol. Biol., 2018, vol. 52, DOIhttps://doi.org/10.1134/S0026893318010041.

14. Jones S.M., Solomon E.I. Electron Transfer and Reaction Mechanism of Laccases. Cell Mol Life Sci., 2015, vol. 72, pp. 869-883, DOIhttps://doi.org/10.1007/s00018-014-1826-6.Electron.

15. Komori H., Kataoka K., Tanaka S., Matsuda N., Higuchi Y., Sakurai T. Exogenous acetate ion reaches the type II copper centre in CueO through the water-excretion channel and potentially affects the enzymatic activity. Acta Crystallogr. Sect. Struct. Biol. Commun., 2016, vol. 72, pp. 558-563, DOI:https://doi.org/10.1107/S2053230X16009237.

16. Polyakov K.M., Gavryushov S., Ivanova S., Fedorova T. V., Glazunova O.A., Popov A.N., et al., Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water by Steccherinum murashkinskyi laccase: insights into the reaction mechanism. Acta Crystallogr. Sect. D Struct. Biol., 2017, vol. 73, pp. 388-401, DOI:https://doi.org/10.1107/S2059798317003667.


Login or Create
* Forgot password?