The work explored the influence of moderately chronic doses of NaNO2 on the oxidative modification of Hb and RBC, changes the activity of catalase, glutathione peroxidase (GP) and the intensity of peroxide oxidation of lipids (LPO). Analysis of the spectral lines of Raman Spectroscopy shows that the ability of the Hb to bind O2 I1580/I1548 in a suspension of erythrocytes treated with NaNO2 is significantly higher than control and this effect directly depends on the concentration of NaNO2 and significant even at the minimum concentrations of NaNO2 (0,07 mm), and relative ability of Hb to give ligands I1375/I1580 is also dose dependent but in the opposite direction. Manifestations of symmetrical and asymmetrical vibrations of the pyrrole rings of Hb (I1375/I1172) increase with an increasing nitrite dose by ~ 14 %, which indicates the presence of conformational changes in the pyrrole rings associated with the oxidative modification of Hb. MetHb accumulation also dose-depend and reaches its maximum at 30-40 minutes, this is accompanied by the intensification of processes of LPO and the increasing share of membrane bound Hb. It is characteristic that the development of oxidative process is accompanied by a decrease in catalase activity and the activity of GP changes ambiguously and multiple grows with increased NaNO2 contents. Noting these facts, we can say that the already relatively small concentrations of nitrite of sodium can affect the conformation of Hb, resulting in a change in his affinity for O2. This stimulates oxidative modification of Hb, which is reflected in the increasing accumulation of metHb and loss of activities of catalase and GP, and at high concentrations of nitrite to increase the activity of GP.
erythrocytes, hemoglobin, catalase, glutathionperoxidase, LPO, sodium nitrite
1. Mensinga T.T., Gerrit J.A., Speijers J.M. Health Implications of Exposure to Environmental Nitrogenous Compounds. Toxicological Reviews, 2003, vol. 22, iss. 1, pp 41-51.
2. Spagnuolo C., Rinelli P., Coletta M., Chiancone E., Ascoli F., Oxidation reaction of human oxyhemoglobin with nitrite: a reexamination. Biochim Biophys Acta., 1987, vol. 5, no. 911, iss. 1, pp. 59-65.
3. May J.M., Zhi-Chao Qu, Li Xia, Charles E.C. Nitrite uptake and metabolism and oxidant stress in human erythrocytes. American Journal of Physiology-Cell Physiology, 2000, v. 279, no. 6, pp 1946-1954
4. Zavodnik I.B., Lapshina E.A., Rekawiecka K., Zavodnik L.B., Bartosz G., Bryszewska M. Membrane effects of nitrite-induced oxidation of human red blood cells. Biochim Biophys Acta, 1999, vol. 15, no. 1421, iss. 2, pp. 306-16.
5. Widmer C.C., Pereira C.P., Gehrig P., Vallelian F., Schoedon G, Buehler P.W, Schaer D.J. Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase. Antioxid Redox Signal, 2010, vol. 12, no. 2, pp. 185-98.
6. Uskokovich-Markovich S., Jelikich-Stankov M., Holclajtner-Antunovich I., Durdevich P. Raman spectrosopy as a new biochemical diagnostic tool. J. Med. Biochem, 2013, vol. 32, no. 2, pp. 96-103.
7. Keri P. Primenenie spetroskopii KR i RKR v biohimii. M.: Mir, 1985, 272 s. [Cary P. Application of spetroscopy of the RS and RKC in biochemistry. Moscow: Mir, 1985, 272 p. (in Russ)]
8. Solov'ev K.N., Gladkov L.L., Staruhin A.S. Spektroskopiya porfirinov: Kolebatel'nye sostoyaniya. Minsk: Nauka i tehnika, 1985, 415 s. [Soloviev K.N., Gladkov L.L., Starukhin A.S. Spectroscopy of porphyrins: Oscillatory states. Minsk: Science and Technology, 1985, 415 p. (in Russ)]
9. Maksimov G.V., Maksimova N.V., Churie A.A. i dr. Issledovanie izmeneniy konformacii porfirina gemoglobina pri pervichnoy gipertenzii. Biohimiya, 2001, t. 66, vyp. 3, s. 365-370. [Maksimov G.V., Maksimova N.V., Churie A.A. Research of changes in the conformation of porphyrin hemoglobin in primary hypertension. Biochemistry, 2001, vol. 66, iss. 3, p. 365-370. (In Russ.)]
10. Winterbourn C.C. Oxidative reactions of hemoglobin. Methods Enzymol., 1990, vol. 186, pp. 265-272.
11. Szebeni J., Winterbourn C. C., Carrell R. W. Oxidative interactions between haemoglobin and membrane lipid. A liposome model. Biochem. J., 1984, vol. 220, no. 3, pp. 685-692.
12. Moin V.M. Prostoy i specificheskiy metod opredeleniya aktivnosti glutationperoksi-dazy v eritrocitah. Lab. Delo, 1986, no. 12, c. 724-727. [Moin V.M. A simple and specific method for determining the activity of glutathione peroxydase in erythrocytes. Lab. Delo, 1986, no. 12, pp. 724-727. (In Russ.)]
13. Korolyuk M. A. Metod opredeleniya aktivnosti katalazy. Lab. delo, 1988, t. 64, № 3, c. 16-17. [Korolyuk M.A. Method for determination of catalase activity. Lab. Delo, 1988, t. 64, no. 3, c. 16-17. (In Russ.)]
14. Lakin G.F. Biometriya. M.: Vysshaya shkola, 1990, 352 s. [Lakin G.F. Biometriya. Moscow, 1990, 352 p. (in Russ.)]
15. Irzhak L.I. Hb i ih svoystva. M.: Nauka, 1975, 239 s. [Irjak L.I. Hb and their properties. Moscow: Nauka, 1975, 352 c. (In Russ.)]
16. Duke researchers discover central role of Nitric Oxide in hemoglobin action. Duke Medicine News and Communication, 2004, vol. 3.
17. Ruban M.K., Vashanov G.A., Lavrinenko I.A. Strukturno-funkcional'nye modifikacii nitrozilirovannogo Hba, inducirovannye oksigenaciey. Vestnik VGU, Seriya: Biologiya. Farmaciya, 2010, № 1, s. 56-61. [Ruban M.K, Vashanov G.A, Lavrinenko I.A. Structural and functional modifications of nitrosylated Hba, induced by oxygenation. Digest VSU, Series: Biology. Pharmacia, 2010, no. 1, p. 56-61. (In Russ.)]
18. Hobbs A.I., Gladwin M.T., Patel R.P., Williams D.L.H., Butler A.R. Haemoglobin: NO transporter, NO inactivator or NO of the above. TRENDS in Pharmacological Science, 2002, vol. 23, r. 406-411.
19. Ramser K, Logg K, Goksör M, Enger J, Käll M, Hanstorp D. Resonance Raman spectroscopy of optically trapped functional erythrocytes. J Biomed Opt., 2004, vol. 9, no. 3, pp. 593-600.
20. Podstawka E, Rajani C, Kincaid JR, Proniewicz LM. Resonance Raman studies of heme structural differences in subunits of deoxyhemoglobin. Biopolymers, 2000, vol. 57, no. 4, pp. 201-207.
21. Tsuneshige A, Imai K, Tyuma I. The binding of hemoglobin to red cell membrane lowers its oxygen affinity. J Biochem., 1987, vol. 101, no. 3, pp. 695-704.
22. Kirschner-Zilber I, Setter E, Shaklai N. Association of hemoglobin chains with the cell membrane as a cause of red cell distortion in thalassemia. Biochem Med Metab Biol., 1987, vol. 38, no. 1, no. 19-31.
23. Welbourn E.M, Wilson M.T, Yusof A, Metodiev M.V, Cooper C.E. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radical Biology and Medicine, 2017, vol. 103, pp. 95-106.
24. Osipov A. N., Borisenko G. G., Vladimirov Yu. A. Biologicheskaya rol' nitrozil'nyh kompleksov gemoproteinov. Uspehi biologicheskoy himii, 2007, t. 47, s. 259-292. [Osipov A.N., Borisenko G.G., Vladimirov Yu. A. Biological role of nitrosyl complexes of hemoproteins. Uspekhi biologicheskoy khimii, 2007, vol. 47, p. 259-292. (In Russ.)]
25. Giulivi C, Davies K.J. Hydrogen peroxide-mediated ferrylhemoglobin generation in vitro and in red blood cells. Methods Enzymol., 1994, vol. 231, pp. 490-6.
26. Ansari F.A., Mahmood R. Sodium nitrite enhances generation of reactive oxygen species that decrease antioxidant power and inhibit plasma membrane redox system of human erythrocytes. Cell Biol Int., 2016, vol. 40, vol. 8, pp. 887-894.
27. Montenegro M.F., Pinheiro L.C., Amaral J.H., Marçal D.M., Palei A.C., Costa-Filho A.J., Tanus-Santos J.E. Antihypertensive and antioxidant effects of a single daily dose of sodium nitrite in a model of renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol., 2012, vol. 385, no. 5, no. 509-17.
28. Hogg N., Kalyanaraman B. Nitric oxide and lipid peroxidation. Biochim Biophys Acta., 1999, vol. 1411, no. 2-3, pp. 378-384.
29. Violi F., Marino R., Milite M.T., Loffredo L. Nitric oxide and its role in lipid peroxidation. Diabetes Metab Res Rev., 1999, vol. 15, no. 4, pp. 283-288
30. Shugaley I.V., L'vov S.N., Celinskiy I.V., Baev V.I. Vliyanie intoksikacii nitritom natriya na aktivnost' fermentov antioksidantnoy zaschity i processy peroksidacii v eritrocitah myshi. Ukr. biohim. zhurnal, 1992, t. 64, vyp. 2, s. 111-114. [Shugaley I.V., Lvov S.N., Tselinsky I.V., Baev V.I. Influence of sodium nitrite intoxication on the activity of antioxidant defense enzymes and peroxidation processes in mouse erythrocytes. Ukr. biochem. Journal, 1992, vol. 64, iss. 2, p. 111-114. (In Russ.)]
31. Titov V.Yu., Petrenko M.Yu., Vzaimodeystvie nitrita s katalazoy kak vazhnyy element ego toksichnosti. Biohimiya, 2003, t. 68, vyp. 6, s. 769-777. [Titov V.Yu., Petrenko M.Yu., Interaction of nitrite with catalase as an important element of its toxicity. Biochemistry, 2003, vol. 68, iss. 6, pp. 769-777. (In Russ.)]
32. Titov V.Yu., Osipov A.N. Nitrite and nitroso compounds can serve as specific catalase inhibitors. Redox Report, 2017, vol. 22, no. 2, pp. 91-97.
33. Rocha S., Gomes D., Lima M., Bronze-da-Rocha E., Santos-Silva A. Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress. Free Radic Res., 2015, vol. 49, no. 8, pp. 990-1003.
34. Asahi M., Fujii J., Suzuki K., Seo H.G., Kuzuya T., Hori M., Tada M., Fujii S., Taniguchi N. Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J Biol Chem., 1995, vol. 270, no. 36, pp. 21035-21039.
35. Guseynova S.Ya., Gulieva R.T., Dadashov M.Z., Dzhafarov A.I., Yah'yaeva F.R., Guseynov T.M. Okislitel'naya modifikaciya gemoglobina izolirovannyh eritrocitov v inkubacionnoy srede, soderzhaschey nitrit natriya i selenit natriya. Vestnik Novosibirskogo gosudarstvennogo ped. un-ta, 2016, t. 5, № 33, s. 207-217. [Huseynova S.Ya., Guliyeva R.T., Dadashov M.Z., Jafarov A.I., Yakhyaeva F.R., Huseynov T.M. Bulletin of the Novosibirsk State Pedagogical University, 2016, vol. 5, no. 33, pp. 207-217. (In Russ.)]