We have established that nitrogen monoxide (NO) and hydrogen sulfide (H2S) have a modulating effect on the Ca2 + -dependent potassium channels of the erythrocyte membrane. This leads to a change in the hyperpolarization amplitude of the membrane caused by the calcium ionophore or redox agents. The effects of NO and H2S depend on the way the channels are activated. The effect of NO and H2S on the channels under investigation can be mediated by the modification of SH-groups of ion channel proteins or proteins regulating its conductivity, in particular, which are part of the electron transport chain of the erythrocyte membrane.
erythrocytes, calcium-dependent potassium channels, gas intermediaries
1. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J., 2002, vol. 16, no. 13. pp. 1792-1798.
2. Bor-Kucukatay M., Wenby R.B., Meiselman H. J., Baskurt O.K. Effects of nitric oxide on red blood cell deformability. Am J Physiol. Heart Circ. Physiol., 2003, vol. 284, pp. H1577-H1584.
3. Nicolay J.P., Liebig G., Niemoeller O.M., Koka S., Ghashghaeinia M, Wieder T., Haendeler J, BusseR., Lang F. Inhibition of suicidal erythrocyte death by nitric oxide. Pflügers Archiv European Journal of Physiology, 2008, vol. 456, no. 2, pp. 293-305.
4. Trubacheva O.A., Shahristova E.V., Galich A.I., Petrova I.V. Vliyanie povyshennoy Sa2+-zavisimoy kalievoy pronicaemosti na deformiruemost' eritrocitov. Vestnik TGPU, 2011, vyp. 5, № 107, s. 69-72. [Trubacheva O.A., SHahristova E.V., Galich A.I., Petrova I.V. The effect of increased Ca2 + -dependent potassium permeability on erythrocyte deformability. Digest TGPU, 2011, iss. 5, no. 107, pp. 69-72. (In Russ.)]
5. Lang F., Lang K.S., Lang P.A., Huber S.M, Wieder T. Mechanisms and significance of eryptosis. Antioxid Redox Signal., 2006, vol. 8, no. 8, pp. 1183-1192.
6. Gyul'handanyan A.V., Geokchakyan G.M. Sa2+-zavisimyy vyhod K+ iz eritrocitov, inducirovannyy okislitel'nymi processami. Biofizika, 1991, t. 36, № 1, s. 169-171. [Gyulhandanyan A.V., Geokchakyan G.M. Ca2 +-dependent K + output of the red blood cells induced by oxidative processes. Biofizika, 1991, vol. 36, no. 1, pp. 169-171 (In Russ.)]
7. Orlov S.N., Petrova I.V., Pokudin N.I., Baskakov M.B., Medvedev M.A. Sa2+-aktiviruemye kalievye kanaly eritrocitov, issledovannye metodom registracii Sa2+-inducirovannyh izmeneniy membrannogo potenciala. Biologicheskie membrany, 1992, t. 9, № 9, s. 885-903. [Orlov S.N., Petrova I.V., Pokudin N.I., Baskakov M.B., Medvedev M.A. Biologicheskie membrany, 1992, vol. 9, no. 9, pp. 885-903. (In Russ.)]
8. Ignarro L., Cirino G., Casini A., Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol., 2002, vol. 34, no. 6, pp. 879-886.
9. Mohazzabh K.M., Kaminski P.M., Agarwal R., Wolin M.S. Potential role of a membrane-bound NADH oxidoreductase in nitric oxide release and arterial relaxation to nitroprusside. Circ Res., 1999, no. 84, iss. 2, pp. 220-228.
10. Kennett E.C., Kuchell P.W. Redox reactions and electron transfer across the red cell membrane. IUBMB Life, 2003, vol. 55, no. 7, pp. 375-385.
11. Alvarez J., Montero M., Garcia-Sancho J. High affinity inhibition of Ca2+-dependent K+-channels by cytochrome P-450 inhibitors. J. Biol. Chem., 1992, vol. 267, no. 17, pp. 11789-11793.
12. Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996, vol. 16, no. 3, pp. 1066-1071.