POSSIBILITIES OF APPLICATION OF SALIVA FTIR-SPECTROSCOPY FOR THE DIAGNOSIS OF CANCER
Abstract and keywords
Abstract (English):
The basic possibility of diagnosing lung and breast cancer using the method of IR Fourier spectroscopy is shown. Statistically significant differences for infrared spectra of saliva in patients with lung cancer are observed in the spectral range of 1070-1240 cm-1 and can be attributed to nucleic acids. For the group of patients with breast cancer, the differences in the spectra are significantly larger: absorption bands of phosphodiester groups, nucleic acids and phospholipids (1300 and 800 cm-1), methyl and methylene groups of protein molecules, lipids, and carboxyl groups of fatty acids and amino acids (1500 -1300 cm-1), DNA and RNA (1700-1580 cm-1), as well as methyl and methylene groups of saturated and unsaturated alkyl chains (3050-2800 cm-1) differ in intensity. Coefficients revealed I1398/1454 and I1240/1310, whose change against the background of oncological pathology is statistically significant.

Keywords:
saliva, infrared spectroscopy, diagnosis, lung cancer, breast cancer
Text
Publication text (PDF): Read Download
References

1. Bunaciu A.A., Hoang V.D., Aboul-Enein H.Y. Applications of FT-IR Spectrophotometry in Cancer Diagnostics. Critical Reviews in Analytical Chemistry, 2015, vol. 45(2), pp. 156-165.

2. Zwielly A., Mordechai S., Sinielnikov I., Salman A., Bogomolny E., Argov S. Advanced statistical techniques applied to comprehensive FTIR spectra on human colonic tissues. Med. Phys., vol. 37(3), pp. 1047-1055.

3. Sheng D., Wu Y., Wang X., Huang D., Chen X., Liu X. Comparison of serum from gastric cancer patients and from healthy persons using FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, vol. 116, pp. 365-369.

4. Baker M.J., Gazi E., Brown M.D., Shanks J.H., Clarke N.W., Gardner P. Investigating FTIR based histopathology for the diagnosis of prostate cancer. J. Biophotonics, 2009, vol. 2, pp. 104-113, DOI:https://doi.org/10.1002/jbio.200810062.

5. Ostrovsky E., Zelig U., Gusakova I., Ariad S., Mordechai S., Nisky I., Kapilushnik J. Detection of Cancer Using Advanced Computerized Analysis of Infrared Spectra of Peripheral Blood. IEEE Transactions on Biomedical Engineering, 2013, vol. 60(2), pp. 343-353.

6. Ollesch J., Theegarten D., Altmayer M., Darwiche K., Hager T., Stamatis G., Gerwert K. An infrared spectroscopic blood test for non-small cell lung carcinoma and subtyping into pulmonary squamous cell carcinoma or adenocarcinoma. Biomedical Spectroscopy and Imaging, 2016, vol. 5, pp. 129-144, DOI:https://doi.org/10.3233/BSI-160144.

7. Ma X.D., Jiang S.P., Wang W., Li C.X., Wang H.Y. Comparison study on FTIR Spectra of finger nails of normal people and patients with lung cancer. Chin. J. Spectrosc. Lab, 2007, vol. 24, pp. 456-459.

8. Sun X., Xu Y., Wu J., Zhang Y., Sun K. Detection of lung cancer tissue by attenuated total reflection Fourier transform infrared spectroscopy - a pilot study of 60 samples. Journal of surgical research, 2013, vol. 179, pp. 33-38.

9. Lewis P.D., Lewis K.E., Ghosal R., Bayliss S., Lioyd A.J., Wills J., Godfrey R., Kloer P., Mur L.A.J. Evaluation of FTIR Spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer, 2010, vol. 10, pp. 3-10, DOI:https://doi.org/10.1186/1471-2407-10-640.

10. Wang X., Shen X., Sheng D., Chen X., Liu X. FTIR spectroscopic comparison of serum from lung cancer patients and healthy persons. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, vol. 122, pp. 193-197.

11. Yano K., Ohoshima S., Gotou Y., Kumaido K., Moriguchi T., Katayama H. Direct measurement of human lung cancerous and noncancerous tissues by fourier transform infrared microscopy: can an infrared microscope be used as a clinical tool? Anal. Biochem., 2000, vol. 287, pp. 218-225.

12. Giorgini E., Balercia P., Conti C., Ferraris P., Sabbatini S., Rubini C., Tosi G. Vibrational Spectroscopy in Body Fluids Analysis. Journal of Molecular Structure, 2013, vol. 1051, pp. 226-232.

13. Yip H.K., To W.M. An FTIR study of the effects of artificial saliva on the physical characteristics of the glass ionomer cements used for art. Dental Materials, 2005, vol. 21, pp. 695-703.

14. Khaustova S., Shkurnikov M., Tonevitsky E., Artyushenko V., Tonevitsky A. Noninvasive biochemical monitoring of physiological stress by Fourier transform infrared saliva spectroscopy. Analyst, 2010, vol. 135, pp. 3183-3192, DOI:https://doi.org/10.1039/c0an00529k.

15. Perez-Guaita D., Ventura-Gayete J., Pérez-Rambla C., Sancho-Andreu M., Garrigues S., de la Guardia M. Protein determination in serum and whole blood by attenuated total reflectance infrared spectroscopy. Analytical and Bioanalytical Chemistry, 2012, vol. 404(3), pp. 649-656.

16. Bogomolny E., Argov S., Mordechai S., Huleihel M. Monitoring of viral cancer progression using FTIR microscopy: a comparative study of intact cells and tissues. Biochim. Biophys. Acta, 2008, vol. 1780(9), pp. 1038-1042.

17. Nonaka T., Wong D.T.W. Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva. The Enzymes, 2017, vol. 42, pp. 125-151.

18. Kondratova V.N., Botezatu I.V., Shelepov V.P., Lihtenshteyn A.V. Vnekletochnye nukleinovye kisloty kak markery opuholevogo rosta. Rossiyskiy bioterapevticheskiy zhurnal, 2013, № 12(3), s. 3-10. [Kondratova V.N., Botezatu I.V., Shelepov V.P., Likhtenshteyn A.V. Extracellular nucleic acids as markers of tumor growth. Rossiyskiy bioterapevticheskiy zhurnal, 2013, vol. 12(3), pp. 3-10. (In Russ.)]

19. Garcia V., Garcia J.M., Pena C., Silva J., Domínguez G., Lorenzo Y., Diaz R., Espinosa P., de Sola J.G., Cantos B., Bonilla F. Free circulating mRNA in plasma from breast cancer patients and clinical outcome. Cancer Lett., 2008, vol. 263, pp. 312-320, DOI:https://doi.org/10.1016/j.canlet.2008.01.008.

20. Miura N., Nakamura H., Sato R., Tsukamoto T., Harada T., Takahashi S., Adachi Y., Shomori K., Sano A., Kishimoto Y., Ito H., Hasegawa J., Shiota G. Clinical usefulness of serum telomerase reverse transcriptase (hTERT) mRNA and epidermal growth factor receptor (EGFR) mRNA as a novel tumor marker for lung cancer. Cancer Sci., 2006, vol. 97, pp. 1366-1373, DOI:https://doi.org/10.1111/j.1349-7006.2006.00342.x.

21. Stroun M., Maurice P., Vasioukhin V., Lyautey J., Lederrey C., Lefort F., Rossier A., Chen X.Q., Anker P. The origin and mechanism of circulating DNA. Ann. N. Y. Acad. Sci, 2000, vol. 906, pp. 161-168.

22. Schwarzenbach H., Alix-Panabieres C., Muller I. Letang N., Vendrell J.P., Rebillard X., Pantel K. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin. Cancer Res., 2009, vol. 15, pp. 1032-1038, DOI:https://doi.org/10.1158/1078-0432.CCR-08-1910.

23. Jian G., Songwen Z., Ling Z., Qinfang D., Jie Z., Liang T., Caicun Z. Prediction of epidermal growth factor receptor mutations in the plasma/pleural effusion to efficacy of gefit-inib treatment in advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol, 2010, vol. 136, pp. 1341-1346, DOI:https://doi.org/10.1007/s00432-010-0785-z.

24. Dovbeshko G.I., Chegel V.I., Gridina N.Y., Repnytska O.P., Shirshov Y.M., Tryndiak V.P., Todor I.M., Solyanik G.I. Surface enhanced IR absorption of nucleic acids from tumor cells: FTIR reflectance study. Biopolymers, 2002, vol. 67(6), pp. 470-486.

25. Argov S., Sahu R.K., Bernshtain E., Salam A., Shohat G., Zelig U., Mordechai S. Inflammatory bowel diseases as an intermediate stage between normal and cancer: a FTIR-microspectroscopy approach. Biopolymers, 2004, vol. 75(5), pp. 384-392.

26. Yang Y., Sule-Suso J., Sockalingum G.D., Kegelaer G., Manfait M., El Haj A.J. Study of tumor cell invasion by Fourier transform infrared microspectroscopy. Biopolymers, 2005, vol. 78(6), pp. 311-317.

27. Li Q.B., Sun X.J., Xu Y.Z., Yang L.M., Zhang Y.F., Weng S.F., Shi J.S. Diagnosis of gastric inflammation and malignancy in endoscopic biopsies based on Fourier transform infrared spectroscopy. Clin. Chem., 2005, vol. 51(2), pp. 346-350.

28. Ganim Z., Chung H.S., Smith A.W., Deflores L.P., Jones K.C., Tokmakoff A. Amide I two-dimensional infrared spectroscopy of proteins. Acc. Chem. Res., 2008, vol. 41(3), pp. 432-441, DOI:https://doi.org/10.1021/ar700188n.

29. Schultz C.P. The Potential Role of Fourier Transform Infrared Spectroscopy and Imaging in Cancer Diagnosis Incorporating Complex Mathematical Methods. Technology in Cancer Research & Treatment, 2002, vol. 1(2), pp. 95-104.

30. Petibois C., Deleris G. Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology. Trends Biotechnol., 2006, vol. 24(10), pp. 455-462, DOI:https://doi.org/10.1016/j.tibtech.2006.08.005.

31. Sheng D., Xu F., Yu Q., Fang T., Xia J., Li S., Wang X. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy. Journal of Molecular Structure, 2015, vol. 1099, pp. 18-23.

32. Zhou S., Xu Z., Ling X.F., Li Q.B., Xu Y.Z., Zhang L., Zhao H.M., Wang L.X., Hou K.Y., Zhou X.S., Wu J.G. FTIR spectroscopic characterization of freshly removed breast cancer tissues. Chin. J. Oncol., 2006, vol. 28(7), pp. 512-514.


Login or Create
* Forgot password?