Показана принципиальная возможность диагностики рака легкого и молочной железы с использованием метода ИК-Фурье-спектроскопии. Статистически достоверные отличия для ИК-спектров слюны больных раком легкого наблюдаются в спектральном диапазоне 1070-1240 см-1 и могут быть отнесены к нуклеиновым кислотам. Для группы пациентов с раком молочной железы отличий в спектрах значительно больше: различаются по интенсивности полосы поглощения фосфодиэфирных групп, нуклеиновых кислот и фосфолипидов (1300 и 800 см-1), метильных и метиленовых групп молекул белков, липидов, а также карбоксильных групп жирных кислот и аминокислот (1500-1300 см-1), ДНК и РНК (1700-1580 см-1), а также метильных и метиленовых групп насыщенных и ненасыщенных алкильных цепей (3050-2800 см-1). Выявлены коэффициенты I1398/1454 и I1240/1310, изменение которых на фоне онкологической патологии статистически достоверно.
слюна, инфракрасная спектроскопия, диагностика, рак легкого, рак молочной железы
1. Bunaciu A.A., Hoang V.D., Aboul-Enein H.Y. Applications of FT-IR Spectrophotometry in Cancer Diagnostics. Critical Reviews in Analytical Chemistry, 2015, vol. 45(2), pp. 156-165.
2. Zwielly A., Mordechai S., Sinielnikov I., Salman A., Bogomolny E., Argov S. Advanced statistical techniques applied to comprehensive FTIR spectra on human colonic tissues. Med. Phys., vol. 37(3), pp. 1047-1055.
3. Sheng D., Wu Y., Wang X., Huang D., Chen X., Liu X. Comparison of serum from gastric cancer patients and from healthy persons using FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, vol. 116, pp. 365-369.
4. Baker M.J., Gazi E., Brown M.D., Shanks J.H., Clarke N.W., Gardner P. Investigating FTIR based histopathology for the diagnosis of prostate cancer. J. Biophotonics, 2009, vol. 2, pp. 104-113, DOI:https://doi.org/10.1002/jbio.200810062.; ; EDN: https://elibrary.ru/YAPASR
5. Ostrovsky E., Zelig U., Gusakova I., Ariad S., Mordechai S., Nisky I., Kapilushnik J. Detection of Cancer Using Advanced Computerized Analysis of Infrared Spectra of Peripheral Blood. IEEE Transactions on Biomedical Engineering, 2013, vol. 60(2), pp. 343-353.; DOI: https://doi.org/10.1109/TBME.2012.2226882; EDN: https://elibrary.ru/YDCKIH
6. Ollesch J., Theegarten D., Altmayer M., Darwiche K., Hager T., Stamatis G., Gerwert K. An infrared spectroscopic blood test for non-small cell lung carcinoma and subtyping into pulmonary squamous cell carcinoma or adenocarcinoma. Biomedical Spectroscopy and Imaging, 2016, vol. 5, pp. 129-144, DOI:https://doi.org/10.3233/BSI-160144.
7. Ma X.D., Jiang S.P., Wang W., Li C.X., Wang H.Y. Comparison study on FTIR Spectra of finger nails of normal people and patients with lung cancer. Chin. J. Spectrosc. Lab, 2007, vol. 24, pp. 456-459.
8. Sun X., Xu Y., Wu J., Zhang Y., Sun K. Detection of lung cancer tissue by attenuated total reflection Fourier transform infrared spectroscopy - a pilot study of 60 samples. Journal of surgical research, 2013, vol. 179, pp. 33-38.; DOI: https://doi.org/10.1016/j.jss.2012.08.057; EDN: https://elibrary.ru/RLAPFL
9. Lewis P.D., Lewis K.E., Ghosal R., Bayliss S., Lioyd A.J., Wills J., Godfrey R., Kloer P., Mur L.A.J. Evaluation of FTIR Spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer, 2010, vol. 10, pp. 3-10, DOI:https://doi.org/10.1186/1471-2407-10-640.; ; EDN: https://elibrary.ru/NYUKJD
10. Wang X., Shen X., Sheng D., Chen X., Liu X. FTIR spectroscopic comparison of serum from lung cancer patients and healthy persons. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, vol. 122, pp. 193-197.
11. Yano K., Ohoshima S., Gotou Y., Kumaido K., Moriguchi T., Katayama H. Direct measurement of human lung cancerous and noncancerous tissues by fourier transform infrared microscopy: can an infrared microscope be used as a clinical tool? Anal. Biochem., 2000, vol. 287, pp. 218-225.; DOI: https://doi.org/10.1006/abio.2000.4872; EDN: https://elibrary.ru/YGAYJU
12. Giorgini E., Balercia P., Conti C., Ferraris P., Sabbatini S., Rubini C., Tosi G. Vibrational Spectroscopy in Body Fluids Analysis. Journal of Molecular Structure, 2013, vol. 1051, pp. 226-232.; DOI: https://doi.org/10.1016/j.molstruc.2013.08.007; EDN: https://elibrary.ru/YESKET
13. Yip H.K., To W.M. An FTIR study of the effects of artificial saliva on the physical characteristics of the glass ionomer cements used for art. Dental Materials, 2005, vol. 21, pp. 695-703.; DOI: https://doi.org/10.1016/j.dental.2004.09.009; EDN: https://elibrary.ru/KICDVF
14. Khaustova S., Shkurnikov M., Tonevitsky E., Artyushenko V., Tonevitsky A. Noninvasive biochemical monitoring of physiological stress by Fourier transform infrared saliva spectroscopy. Analyst, 2010, vol. 135, pp. 3183-3192, DOI:https://doi.org/10.1039/c0an00529k.; ; EDN: https://elibrary.ru/PAGXEB
15. Perez-Guaita D., Ventura-Gayete J., Pérez-Rambla C., Sancho-Andreu M., Garrigues S., de la Guardia M. Protein determination in serum and whole blood by attenuated total reflectance infrared spectroscopy. Analytical and Bioanalytical Chemistry, 2012, vol. 404(3), pp. 649-656.; DOI: https://doi.org/10.1007/s00216-012-6030-7; EDN: https://elibrary.ru/OVCIGI
16. Bogomolny E., Argov S., Mordechai S., Huleihel M. Monitoring of viral cancer progression using FTIR microscopy: a comparative study of intact cells and tissues. Biochim. Biophys. Acta, 2008, vol. 1780(9), pp. 1038-1042.
17. Nonaka T., Wong D.T.W. Saliva-Exosomics in Cancer: Molecular Characterization of Cancer-Derived Exosomes in Saliva. The Enzymes, 2017, vol. 42, pp. 125-151.
18. Кондратова В.Н., Ботезату И.В., Шелепов В.П., Лихтенштейн А.В. Внеклеточные нуклеиновые кислоты как маркеры опухолевого роста. Российский биотерапевтический журнал, 2013, № 12(3), с. 3-10. [Kondratova V.N., Botezatu I.V., Shelepov V.P., Likhtenshteyn A.V. Extracellular nucleic acids as markers of tumor growth. Rossiyskiy bioterapevticheskiy zhurnal, 2013, vol. 12(3), pp. 3-10. (In Russ.)]; EDN: https://elibrary.ru/REOKDL
19. Garcia V., Garcia J.M., Pena C., Silva J., Domínguez G., Lorenzo Y., Diaz R., Espinosa P., de Sola J.G., Cantos B., Bonilla F. Free circulating mRNA in plasma from breast cancer patients and clinical outcome. Cancer Lett., 2008, vol. 263, pp. 312-320, DOI:https://doi.org/10.1016/j.canlet.2008.01.008.
20. Miura N., Nakamura H., Sato R., Tsukamoto T., Harada T., Takahashi S., Adachi Y., Shomori K., Sano A., Kishimoto Y., Ito H., Hasegawa J., Shiota G. Clinical usefulness of serum telomerase reverse transcriptase (hTERT) mRNA and epidermal growth factor receptor (EGFR) mRNA as a novel tumor marker for lung cancer. Cancer Sci., 2006, vol. 97, pp. 1366-1373, DOI:https://doi.org/10.1111/j.1349-7006.2006.00342.x.
21. Stroun M., Maurice P., Vasioukhin V., Lyautey J., Lederrey C., Lefort F., Rossier A., Chen X.Q., Anker P. The origin and mechanism of circulating DNA. Ann. N. Y. Acad. Sci, 2000, vol. 906, pp. 161-168.
22. Schwarzenbach H., Alix-Panabieres C., Muller I. Letang N., Vendrell J.P., Rebillard X., Pantel K. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin. Cancer Res., 2009, vol. 15, pp. 1032-1038, DOI:https://doi.org/10.1158/1078-0432.CCR-08-1910.
23. Jian G., Songwen Z., Ling Z., Qinfang D., Jie Z., Liang T., Caicun Z. Prediction of epidermal growth factor receptor mutations in the plasma/pleural effusion to efficacy of gefit-inib treatment in advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol, 2010, vol. 136, pp. 1341-1346, DOI:https://doi.org/10.1007/s00432-010-0785-z.; ; EDN: https://elibrary.ru/VGPTXD
24. Dovbeshko G.I., Chegel V.I., Gridina N.Y., Repnytska O.P., Shirshov Y.M., Tryndiak V.P., Todor I.M., Solyanik G.I. Surface enhanced IR absorption of nucleic acids from tumor cells: FTIR reflectance study. Biopolymers, 2002, vol. 67(6), pp. 470-486.; DOI: https://doi.org/10.1002/bip.10165; EDN: https://elibrary.ru/XKVBXB
25. Argov S., Sahu R.K., Bernshtain E., Salam A., Shohat G., Zelig U., Mordechai S. Inflammatory bowel diseases as an intermediate stage between normal and cancer: a FTIR-microspectroscopy approach. Biopolymers, 2004, vol. 75(5), pp. 384-392.
26. Yang Y., Sule-Suso J., Sockalingum G.D., Kegelaer G., Manfait M., El Haj A.J. Study of tumor cell invasion by Fourier transform infrared microspectroscopy. Biopolymers, 2005, vol. 78(6), pp. 311-317.
27. Li Q.B., Sun X.J., Xu Y.Z., Yang L.M., Zhang Y.F., Weng S.F., Shi J.S. Diagnosis of gastric inflammation and malignancy in endoscopic biopsies based on Fourier transform infrared spectroscopy. Clin. Chem., 2005, vol. 51(2), pp. 346-350.
28. Ganim Z., Chung H.S., Smith A.W., Deflores L.P., Jones K.C., Tokmakoff A. Amide I two-dimensional infrared spectroscopy of proteins. Acc. Chem. Res., 2008, vol. 41(3), pp. 432-441, DOI:https://doi.org/10.1021/ar700188n.
29. Schultz C.P. The Potential Role of Fourier Transform Infrared Spectroscopy and Imaging in Cancer Diagnosis Incorporating Complex Mathematical Methods. Technology in Cancer Research & Treatment, 2002, vol. 1(2), pp. 95-104.
30. Petibois C., Deleris G. Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology. Trends Biotechnol., 2006, vol. 24(10), pp. 455-462, DOI:https://doi.org/10.1016/j.tibtech.2006.08.005.; ; EDN: https://elibrary.ru/KINGMP
31. Sheng D., Xu F., Yu Q., Fang T., Xia J., Li S., Wang X. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy. Journal of Molecular Structure, 2015, vol. 1099, pp. 18-23.
32. Zhou S., Xu Z., Ling X.F., Li Q.B., Xu Y.Z., Zhang L., Zhao H.M., Wang L.X., Hou K.Y., Zhou X.S., Wu J.G. FTIR spectroscopic characterization of freshly removed breast cancer tissues. Chin. J. Oncol., 2006, vol. 28(7), pp. 512-514.