We investigated the role of oxidative stress in postpericardiotomic syndrome (PPCS) development mechanism in patients with coronary heart disease (CHD) who underwent direct myocardial revascularization. The study included 76 patients with coronary heart disease aged 46-70 years who performed on the testimony of coronary artery bypass surgery. Patients were divided into two groups. The first group consisted of 66 patients without PPCS, a second - 10 patients with PPCS. Clinical and biochemical examination was performed before and at 1, 3, 5, 7, 10 days after coronary artery bypass surgery were used as controls blood of 10 healthy individuals of both sexes of similar age. The blood and pericardial fluid CHD patients undergoing coronary artery bypass, determined the content of products of lipid peroxidation (diene conjugates, malonic dialdehyde, Schiff bases), the stable metabolite of nitric oxide, asymmetric dimethylarginine (ADMA), arginase activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione), ceruloplasmin oxidase activity and the level of reduced glutathione. The blood and pericardial fluid CHD patients undergoing coronary artery bypass showing intensification of free radical oxidation and the accumulation of lipid peroxidation products; elevated levels of nitric oxide metabolites and activation of arginase ADMA; marked imbalance in the function of superoxide dismutase and catalase in erythrocytes, the tension in the glutathione-dependent enzymes, the inhibition of ceruloplasmin oxidase activity. The described changes are characteristic for the first 5 postoperative days in patients with the PPCS. Thus, in patients with CHD holding direct myocardial revascularization (coronary artery bypass grafting) is accompanied by the development of oxidative and nitrosyl components of oxidative stress.
myocardial revascularization, coronary artery bypass grafting, oxidative stress, postpericardiotomic syndrome, antioxidant enzymes
1. Gelis L.G., Medvedeva E.A., Ostrovskiy Yu.P. Farmakologicheskaya zaschita miokarda pri koronarnom shuntirovanii u bol'nyh s postinfarktnoy stenokardiey. Glavnyy vrach yuga Rossii, 2007, № 4, s. 11-17. [Helis L.G., Medvedeva E.A., Ostrovskiy Y.P. Pharmacological myocardial protection during coronary bypass patients with post-infarction angina. Glavniy vrach yuga Rossii, 2007, no. 4, pp. 11-17. (In Russ.)]; EDN: https://elibrary.ru/YSHIYT
2. Golikov P.P. Nikolaeva N.Yu. Metod opredeleniya nitrita/nitrata (NOx) v syvorotke krovi. Voprosy biomedicinskoy himii, 2004, № 1, s. 79-83. [Golikov P.P., Nikolaeva N.Y. Determination method of nitrite/nitrate (NOx) in the serum. Voprosy biomeditsinskoi chimii. 2004, no.1, pp. 79-83. (In Russ.)]
3. Bligh E.G., Dyer W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol, 1959, vol. 37, pp. 911-917.
4. Stal'naya I.D. Metod opredeleniya dienovoy kon'yugacii nenasyschennyh zhirnyh kislot. Sovremennye metody v biohimii, M.: Medicina, 1977, s. 63-64. [Stalnaya I.D. A method of determining the dienovoj conjugation of unsaturated fatty acids. Sovremennii metodi v biochimii, M.: Meditsina, 1977, pp. 63-64. (In Russ.)]
5. Bidlack W.R., Tappel A.L. Fluorescent products of phospholipids during lipid peroxidation. Lipids, 1973, vol. 8, no. 4, pp. 203-207.
6. Stal'naya I.D., Garishvili T.G. Metod opredeleniya malonovogo dial'degida s pomosch'yu tiobarbitutovoy kisloty. Sovremennye metody v biohimii. M.: Medicina, 1977, s. 66-68. [Stalnaya I.D., Garishvily G.G. Method for determination of malonic dialdehyde using thiobarbituric acid. Sovremennii metodi v biochimii, M.: Meditsina, 1977, pp. 66-68. (In Russ.)]
7. Sirota T.V. Novyy podhod v issledovanii processa autookisleniya adrenalina i ego ispol'zovanie dlya izmereniya aktivnosti superoksiddismutazy. Voprosy medicinskoy himii. 1999, № 3, s. 263-272. [Sirota T.V. A new approach to the study of the process of autookislenia adrenaline and using it to measure the activity of superoxide dismutase. Voprosy meditsinskoi chimii Voprosy medicinskoy himii, 1999, no. 3, pp. 263-272. (In Russ.)]; EDN: https://elibrary.ru/SYRLBX
8. Korolyuk M.A., Ivanova L.I., Mayorova I.G., Tokarev V.E. Metod opredeleniya aktivnosti katalazy. Laboratornoe delo, 1988, № 1, s.16-19. [Koroliuk M.A., Ivanova L.I., Maiorova I.G, TokarevV.E. A method of determining the activity of catalase. Laboratornoe delo, 1988, no. 1, pp. 16-19. (In Russ.)]; EDN: https://elibrary.ru/SICXEJ
9. Kamyshnikov V.S. Kliniko-biohimicheskaya laboratornaya diagnostika. Spravochnik. V 2 tomah. Izdatel'stvo: Mn: Interpresservis, 2003, 958 s. [Kamishnikov V.S. Kliniko-biochemical laboratory diagnostics. Reference. In 2 volumes. Publisher: Minsk: Interpresservis, 2003, 958 p. (In Russ.)]
10. Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem, 1959, vol. 82, pp.70-77.
11. Moin V.M. Prostoy i specificheskiy metod opredeleniya aktivnosti glutationperoksidazy v eritrocitah. Laoratornoe delo, 1986, № 12, c. 724-727. [Moin V.M. Simple and specific method of determining activity of glutathione peroxidase in erythrocytes. Laboratornoe delo, 1986, no. 12, pp. 724-727. (In Russ.)]
12. Panichi V., Taccola D., Rizza G.M. et al. Ceruloplasmin and acute phase protein levels are associated with cardiovascular disease in chronic dialysis patients. J Nephrol, 2004, vol. 17, no. 5, pp. 715-20.
13. Ziakas A., S. Gavrilidis, E. Souliou et al. Ceruloplasmin is a better predictor of the long-term prognosis compared with fibrinogen, CRP, and IL-6 in patients with severe unstable angina. Angiology, 2009, vol. 60, no. 1, pp. 50-59.; DOI: https://doi.org/10.1177/0003319708314249; EDN: https://elibrary.ru/NTCNHZ
14. Meng Q.H., Zhu S., Sohn N. [et al.] Release of cardiac biochemical and inflammatory markers in patients on cardiopulmonary bypass undergoing coronary artery bypass grafting. J Card Surg., 2008, vol. 23, no. 6, pp. 681-687.
15. Aouffen M., Paquin J., Furtos A. [et al.] Oxidative aggregation of ceruloplasmin induced by hydrogen peroxide is prevented by pyruvate. Free Radic Res., 2004, vol. 38, no. 1, pp. 19-26.
16. Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta, 2013, vol. 1830, no. 5, pp. 3217-3266.
17. Buijsse B., Lee D.-H., Steffen L. et al. Low Serum Glutathione Peroxidase Activity Is Associated with Increased Cardiovascular Mortality in Individuals with Low HDLc’s. PLoS One, 2012, vol. 7, no. 6, pp. 1-6.
18. Sibal L., Agarwal S.C., Home P.D. et al. The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease. Curr Cardiol Rev, 2010, vol. 6, no. 2, pp. 82-90.
19. Jung C., Gonon A.T., Sjöquist P.O., Lundberg J.O., Pernow J. Arginase inhibition mediates cardioprotection during ischaemia-reperfusion. Cardiovascular Research, 2010, vol. 85, no. 1, pp. 147-154.; DOI: https://doi.org/10.1093/cvr/cvp303; EDN: https://elibrary.ru/NZPOBB
20. Sydow K., Böger R. H. Reloaded: ADMA and oxidative stressare responsible for endothelial dysfunction in hyperhomocyst(e)inaemia: effects of L-arginine and B vitamins. Cardiovascular Research, 2012, vol. 96, pp. 167-171.
21. Plicner D., Mazura P., Sadowski J. et al. Asymmetric dimethylarginine and oxidative stress following coronary artery bypass grafting: associations with postoperative outcome. European Journal of Cardio-Thoracic Surgery, 2014, vol. 45, pp. 1-6.