THE EFFECT OF HYDROCARBON CHAIN LENGTH OF MEMBRANE LIPIDS, LATERAL PRESSURE AND CHOLESTEROL CONCENTRATION ON MEMBRANE OXYGEN PERMEABILITY
Abstract and keywords
Abstract (English):
We employed scanning electrochemical microscope (SECM) with inverted open platinum electrode (IOPE), integrated with Langmuir bath, to investigate the impact of long-chain hydrocarbons on the permeability of membranes for O2. We show that oxygen permeability of membranes composed of long-chain fatty acids (C18 - stearic or C20 - arachidic) sharply decreases in response to increasing surface pressure in the range 20-45 mN/m. Addition of cholesterol to these membranes (up to 10%) inhibits the effect of surface pressure on the O2 transfer rate. Permeability of membranes composed of lipids with shorter chains (C16 and less) remains high regardless of lateral pressure. Physiological role of the detected phenomena is discussed in connection with O2 gas exchange through the membrane of erythrocytes in blood capillaries. We discuss formation of the elongated cell shape in the capillary, increase in the surface area of the cell membrane, reduction of surface tension in the membrane, reduction of the gap between the erythrocyte membrane and the walls of the capillary, movement of the cell along the capillary, the causes and speed of the cell return to its normal biconcave shape.

Keywords:
Dioxygen diffusion, long-chain hydrocarbons monolayers, surface pressure, cholesterol, SECM
Text
Text (PDF): Read Download
References

1. West J.B. Respiratory physiology - The essentials. Baltimore: Lippincott Williams & Wilkins, 2008, 192 p.

2. Endeward V., Musa-Aziz R., Cooper G.J., Chen L.M., Pelletier M.F., Virkki L.V., Supuran C.T., King L.S., Boron W.F., Gros G. Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J., 2006, vol. 20, pp. 1974-1981.

3. Fischkoff S., Vanderkooi J.M. Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J. Gen. Physiol., 1975, vol. 65, pp. 663-676.

4. Subczynski W.K., Hopwood L.E., Hyde J.S. Is the mammalian cell plasma membrane a barrier to oxygen transport? J. Gen. Physiol., 1992, vol. 100, pp. 69-87.

5. Ligeza A., Tikhonov A.N., Hyde J.S., Subczynski W.K. Oxygen permeability of thylakoid membranes: electron paramagnetic resonance spin labeling study. Biochim. Biophys. Acta, 1998, vol. 1365, pp. 453-463.

6. Subczynski W.K., Wisniewska A. Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Acta Biochim. Pol., 2000, vol. 47, pp. 613-625.

7. Coin J.T., Olson J.S. The rate of oxygen uptake by human red blood cells. J. Biol. Chem., 1979, vol. 254, pp. 1178-1190.

8. Huxley V.H., Kutchai H. The effect of the red cell membrane and a diffusion boundary layer on the rate of oxygen uptake by human erythrocytes. J. Physiol., 1981, vol. 316, pp. 75-83.

9. Yamaguchi K., Nguyen-Phu D., Scheid P., Piiper J. Kinetics of O2 uptake and release by human erythrocytes studied by a stopped-flow technique. J. Appl. Physiol., 1985, vol. 58, pp. 1215-1224.

10. Cogan U., Shinitzky M., Weber G., Nishida T. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry, 1973, vol. 12, pp. 521-528.

11. Edidin M. Rotational and translational diffusion in membranes. Ann. Rev. Biophys. Bioeng., 1974, vol. 3, pp. 179-201.

12. Sinensky M. Homeoviscous adaptation - a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci.USA, 1974, vol. 71, pp. 522-525.

13. Herrera M., Hong N.J., Garvin J.L. Aquaporin-1 transports NO across cell membranes. Hypertension, 2006, vol. 48, pp. 157-164.

14. Uehlein N., Lovisolo C., Siefritz F., Kaldenhoff R. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 2003, vol. 425, pp. 734-737.

15. Saparov S.M., Liu K., Agre P., Pohl P. Fast and selective ammonia transport by aquaporin-8. J. Biol. Chem., 2007, vol. 282, pp. 5296-5301.

16. Agre P., Sasaki S., Chrispeels M. J. Aquaporins: a family of water channel proteins. Am. J. Physiol. - Renal Physiol., 1993, vol. 265, pp. F461-F461.

17. Ivanov I.I., Fedorov G.E., Gus'kova R.A., Ivanov K.I., Rubin A.B. Permeability of lipid membranes to dioxygen. Biochem. Biophys. Res. Commun., 2004, vol. 322, pp. 746-750.

18. Endeward V., Cartron J.P., Ripoche P., Gros G. RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J., 2008, vol. 22, pp. 64-73.

19. Shaitan K.V., Antonov M.Yu., Tourleigh Ye.V., Levtsova O.V., Tereshkina K.B., Kirpichnikov M.P., Nikolaev I.N. Comparative study of molecular dynamics, diffusion, and permeability for ligands in biomembranes of different lipid composition. Biochemistry (Mosc.) Suppl. Ser. A: Membr. Cell Biol., 2008, vol. 2, pp. 73-81.


Login or Create
* Forgot password?