The dynamics of the formation of the texture of the drying precipitate of the dispersed phase (DP) of water is considered. It was previously shown that DP observed through an optical microscope is represented by aggregates of liquid crystal spheres of ~ 10 µm in size, each of which is formed around a NaCl microcrystal and is its hydration shell. After evaporation of free water, the central zone of the sediment film is deformed and cracks, acquiring the texture of the mountain landscape. The microspheres bordering the cracks are destroyed, the hydrated shells dissociate and the salt solution penetrates the cracks. The formation of free water ensures the advancement and cascade of NaCl recrystallizations along the cracks (channels) before they enter the total volume - the place where the channels merge. A cluster of crystalline NaCl is formed there. This ensures spatial separation of sediment components. On the periphery of the drying film, radially arranged serpentine chain structures are formed, described earlier for drying colloidal dispersions as a result of advection, diffusion, and capillary attraction (Colegov and Barash, 2019). The similarities and differences in the observed processes with the description of aging colloidal systems, as well as with the physics of tectonic faults, are discussed.
water, dispersed phase, drying, deformation, separation of components
1. Rozhanskiy I.D. Razvitie estestvoznaniya v epohu antichnosti: rannyaya grecheskaya nauka «o prirode». M.: Nauka, 1979, 124 s. [Rozhansky I.D. The development of science in the era of antiquity: the early Greek science "about nature". Moscow: Nauka, 1979, 124 p. (In Russ.)]
2. Malenkov G.G. Struktura i dinamika zhidkoy vody. Zhurnal strukturnoy himii, 2006, t. 47, s, 5-35. [Malenkov G.G. Structure and dynamics of liquid water. Journal of structural chemistry, 2006, vol. 47, pp. 5-35. (In Russ.)]
3. Sarkisov G.N. Strukturnye modeli vody. UFN, 2006, t. 176, № 8, s. 833-845 [Sarkisov G.N. Structural models of water. Physics-Uspekhi, 2006, vol. 176, no. 8, pp. 833-845. (In Russ.)]
4. Nilsson A., Pettersson L.G.M. Perspective on the structure of liquid water. Chemical Physics, 2011, vol. 389, pp. 1-34.
5. Mel'nichenko N.A. Struktura i dinamicheskie svoystva zhidkoy vody. Vestnik DVO RAN, 2010, t. 1, s. 65-74. [Melnichenko N.A. Structure and dynamic properties of liquid water. Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 2010, vol. 1, pp. 65-74. (In Russ.)]
6. Zaharov S.D., Zyuzin M.V., Mosyagina I.V. Voda: mikrostruktura i fluktuacii. URL: http://www.biophys.ru/archive/h2o-00027.pdf. [Zakharov S.D., Zyuzin M.V., Mosyagina I.V. Water: microstructure and fluctuations. URL: http://www.biophys.ru/archive/h2o-00027.pdf. (In Russ.)]
7. Ito K., Yoshida H., Ise N. Void Structure in colloidal dispersions. Science, 1994, vol. 263, no. 7, pp. 66-68.
8. Ise N., Matsuoka H., Ito K., Yoshida H., Yamanaka J. Ordering of latex particles and ionic polymers in solutions. Langmuir, 1990, vol. 6, pp. 296-302.
9. Bunkin N.F., Shkirin A.V., Kozlov V.A., Starosvetskij A.V. Laser scattering in water and aqueous solutions of salts. Proc. of SPIE, 2010, p. 7376, Article Number: 73761D.
10. Fesenko E.E., Terpugov E.L. O neobychnyh spektral'nyh svoystvah vody v tonkom sloe. Biofizika, 1999, t. 44, № 1, s. 5-9. [Fesenko E.E., Terpugov E.L. On the unusual spectral properties of water in a thin layer. Biofizika, 1999, vol. 44, no. 1, pp. 5-9. (In Russ.)]
11. Smirnov A.N., Lapshin V.B., Balyshev A.V., Lebedev I.M., Syroeshkin A.V. Supranadmolekulyarnye kompleksy vody. Elektronnyy zhurnal «Issledovano v Rossii», 2004. URL: http://zhurnal.ape.relarn.ru/articles/2004/038.pdf. [Smirnov AN, Lapshin V.B., Balyshev A.V., Lebedev I.M., Syroeoshkin A.V. Supranadmolecular complexes of water. Electronic Journal "Investigated in Russia", 2004. URL: http://zhurnal.ape.relarn.ru/articles/2004/038.pdf. (In Russ.)]
12. Goncharuk V.V., Smirnov V.N., Syroeshkin A.V., Malyarenko V.V. Klastery i gigantskie geterofaznye klastery vody. Himiya i tehnologiya vody, 2007, t. 29, № 1, s. 3-17. [Goncharuk V.V., Smirnov V.N., Syroeshkin A.V., Malyarenko V.V. Clusters and giant heterophase clusters of water. Chemistry and Technology of Water, 2007, vol. 29, no. 1, pp. 3-17. (In Russ.)]
13. Sedlák M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: I. Light scattering characterization. J. Phys. Chem. B, 2006, vol. 110, no. 9, pp. 4329-4338.
14. Bukatyy V.I., Nesteryuk P.I. Razrabotka izmeritel'no-vychislitel'nogo kompleksa i metoda malyh uglov rasseyaniya dlya kontrolya opticheskih neodnorodnostey (klasterov) v bidistillirovannoy vode posle deystviya magnitnogo polya. Elektronnyy fiziko-tehnicheskiy zhurnal, 2012, t. 7. URL: http://eftj.secna.ru/vol7/120702.pdf [Bukaty V.I., Nesteruk P.I. Development of a measuring and computing complex and a method of small scattering angles to control optical inhomogeneities (clusters) in bidistilled water after the action of a magnetic field. Electronic Physics and Technology Journal, 2012, vol. 7. URL: http://eftj.secna.ru/vol7/120702.pdf. (In Russ.)]
15. Laptev B.I., Sidorenko G.N., Gorlenko N.P., Kul'chenko A.K., Sarkisov Yu.S., Antoshkin L.V. Ocenka struktury vody i vodnyh rastvorov hlorida natriya s ispol'zovaniem dielektrometrii i rezonansnogo metoda. Vestnik TGASU, 2013, t. 2, s. 235-244. [Laptev B.I., Sidorenko G.N., Gorlenko N.P., Kulchenko A.K., Sarkisov Yu.S., Antoshkin L.V. Evaluation of the structure of water and aqueous solutions of sodium chloride using dielectrometry and resonance method. Vestnik of TSUAB, 2013, vol. 2, pp. 235-244. (In Russ)].
16. Yakhno T., Yakhno V. A study of structural organization of water and aqueous solutions by means of optical microscopy. Crystals, 2019, vol. 9, no. 1, p. 52. DOI:https://doi.org/10.3390/cryst9010052. URL: http://www.mdpi.com/2073-4352/9/1/52.
17. Yakhno T., Drozdov M., Yakhno V. Giant Water Clusters: Where Are They From? Int. J. Mol. Sci., 2019, vol. 20, p. 1582. DOI:https://doi.org/10.3390/ijms20071582. URL: https://www.mdpi.com/1422-0067/20/7/1582.
18. Kolegov K.S. and Barash L.Yu. Joint effect of advection, diffusion and capillary attraction on a spatial structure of particle depositions from evaporating droplets. arXiv:1903.06003 v1 [cond-mat.soft] 14 Mar 2019
19. Hutchinson J.W., Suo Z. Mixed mode cracking in layered materials. Advances in Applied Mechanics, 1991, vol. 29, pp. 63-191. DOI:https://doi.org/10.1016/S0065-2156(08)70164-9.
20. Bacchin P., Brutin D., Davaille A., Giuseppe E., Chen X.D., Gergianakis I., Giorgiutti-Dauphin´e F., Goehring L., Hallez Y., Heyd R., Jeantet R., Floch-Fouere C., Meireles M., Mittelstaedt E., Nicloux C., Pauchard L., Saboungi M.-L. Drying colloidal systems: Laboratory models for a wide range of applications. Eur. Phys. J. E, 2018, vol. 4, p. 94. DOI:https://doi.org/10.1140/epje/i2018-11712-x.
21. Savel'ev D.E., Fedoseev V.B. Tverdofaznoe pereraspredelenie mineral'nyh chastic v voshodyaschem mantiynom potoke kak mehanizm koncentracii hromita v ofiolitovyh ul'tramafitah (na primere ofiolitov Kraka, Yuzhnyy Ural). Georesursy, 2019, t. 21, № 1, s. 31-46. DOI: https://doi.org/10.18599/grs.2019.1.31-46. [Saveliev D.E., Fedoseev V.B. Solid-phase redistribution of mineral particles in the ascending mantle flow as a mechanism for the concentration of chromite in ophiolite ultramafites (using the example of Kraka ophiolites, the South Urals). Georesources, 2019, vol. 21, no. 1, pp. 31-46. DOI:https://doi.org/10.18599/grs.2019.1.31-46. (In Russ.)]
22. Kalyasnikov Yu.A. Nanomineralogiya vody i biosfernye processy: 2-e izd., pererab. i dop. Magadan: SVNC DVO RAN, 2000. 64 s. URL: http://ukhtoma.ru/koljasnikov1.htm [Kalyasnikov Yu.A. Nano-mineralogy of water and biospheric processes: 2nd ed., Pererab. and add. Magadan: SVNTS FED RAS, 2000, 64 p. URL: http://ukhtoma.ru/koljasnikov1.htm. (In Russ.)]
23. Shinozaki A., Kagi H., Noguchi N., Hirai H., Ohfuji H., Okada T., Nakano S., Yagi T. Formation of SiH4 and H2O by the dissolution of quartz in H2 fluid under high pressure and temperature. American Mineralogist, 2014, vol. 99, no. 7, pp. 1265-1269. DOI:https://doi.org/10.2138/am.2014.4798.
24. Futera Z., Yong X., Pan Y., Tse J.S., English N.J. Formation and properties of water from quartz and hydrogen at high pressure and temperature. Earth and Planetary Science Letters, 2017, vol. 461, pp. 54-60. DOI:https://doi.org/10.1016/j.epsl.2016.12.031.
25. Coghlan A. Deepest water found 1000km down, a third of way to Earth's core. New Scientist, 27 January 2017. https://www.newscientist.com/article/2119475-planet-earth-makes-its-own-water-from-scratch-deep-in-the-mantle.