ANALYSIS OF THE AMINO-ACID SEQUENCE HOMOLOGY OF GLYCOSIDE-HYDROLASE FROM DIFFERENT PRODUCERS
Abstract and keywords
Abstract (English):
We studied the homology of amino acid sequences of glycolytic enzymes: exo-inulinases ADM21204.1, A.CAC44220.1, EHA22512.1, AHN08014.1, AGR40655.1 and BAC45010.1, endo-inulinases AAN64131.1, ABB59681.1, EHA19510.1, XP_748286 .1, ANY59682.1 and AA02437.1, β-fructosidases CAA04518.1 and CAA52620.1, fructan-1-exohydrolase CAC37922.1 and fructosyltransferase ADK46938.1. The highest amino acid sequences identity value among exo-inulinases was detected for the enzymes from A. awamori and A. ficuum (90.88%), the smallest is between the enzyme from A. niger with enzymes from B. licheniformis and G. stearothermophilus (28.29%). The highest identity value for endo-inulinases is detected between two forms of endo-inulinase from A. niger (ABB59681.1 and EHA19510.1) and amounts to 97.87%, which is also the highest indicator for all enzymes presented in the work, the smallest identity is between the enzymes from A. fumigatus and K. marxianus (27.89%). The smallest indicator of homology among all enzymes presented in the work was detected between exo-inulinase from A. niger and β-fructosidase from T. maritima and was equal to 20.45%. The data presented in the paper demonstrate a significant amino acid composition of carbohydrates, which indicates the wide possibilities of their use in various conditions of industrial hydrolysis of inulin.

Keywords:
glycoside-hydrolases, homology, amino acid sequences
Text
Text (PDF): Read Download
References

1. De Leenheer L. Production and use of inulin: industrial reality with a promising future. Carbohydrates as organic raw materials, 1994, vol. 3, pp. 67-92, DOI:https://doi.org/10.1002/9783527614899.

2. Gupta A.K., Kaur N. Fructan storing plants: a potential source of high fructose syrups. Journal of scientific & industrial research, 1997, vol. 56, no. 8, pp. 447-452.

3. Artyukhov V.G., Holyavka M.G., Kovaleva T.A. Structural and functional properties of inulinases. Ways to regulate their activity. Biophysics, 2013, vol. 58, no. 4, pp. 493-501, DOI:https://doi.org/10.1134/S0006350913040039. ; ; EDN: https://elibrary.ru/SKVXYN

4. Kovaleva T.A., Holyavka M.G. Issledovanie strukturnyh osobennostey inulinaz iz razlichnyh producentov metodom IK-spektrofotometrii. Voprosy biologicheskoy, medicinskoy i farmacevticheskoy himii, 2011, № 1, c. 3-7. @@[Kovaleva T.A., Holyavka M.G. the research of structure features of inulinases from various producers by the method of IR-spectroscopy. Problems of biological, medical and pharmaceutical chemistry, 2011, no. 1, pp. 3-7 (In Russ.)] ; EDN: https://elibrary.ru/PVBTEJ

5. Kovaleva T.A., Holyavka M.G., Taha A.S. Issledovanie immobilizacii inulinazy na ionogennyh i neionogennyh nositelyah. Sorbcionnye i hromatograficheskie processy, 2007, t. 7, № 5, s. 804-810. @@[Kovaleva T.A., Holyavka M.G., Taha A.S. Investigation of inulinase immobilization on ionogenic and nonionogenic carriers. Sorbatic and chromatographic processes, 2007, vol. 7, no. 5, pp. 804-810. (In Russ.)] ; EDN: https://elibrary.ru/KBDAEV

6. Holyavka M.G., Kovaleva T.A., Karpov S.I., Seredin P.V., Artyukhov V.G. Investigation of mechanisms of interaction between inulinase from Kluyveromyces marxianus and the matrices of ion exchange resins and fiber. Biophysics, 2014, vol. 59, no. 2, pp. 223-229. DOI:https://doi.org/10.1134/S0006350914020122. ; ; EDN: https://elibrary.ru/SWWNRR

7. Chapman J.W., Musters W., Rouwenhorst R.J., Toschka H.Y., Verbakel J.M. URL: https://www.ncbi.nlm.nih.gov/protein/CAA02437.1.

8. Andersen M.R., Salazar M.P., Schaap P.J., van de Vondervoort P.J., Culley D., Thykaer J., Frisvad J.C., Nielsen K.F., Albang R., Albermann K., Berka R.M., Braus G.H., Braus-Stromeyer S.A., Corrochano L.M., Dai Z., Dijck P.W., Hofmann G., Lasure L.L., Magnuson J.K., Menke H. [et al.] Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome research, 2011, vol. 21, no. 6, pp. 885-897. DOI:https://doi.org/10.1101/gr.112169.110. ; ; EDN: https://elibrary.ru/YCIZCN

9. Gao J., Xu Y.Y., Yang H.M., Xu H., Xue F., Li S., Feng X.H. Gene cloning, expression, and characterization of an exo-inulinase from Paenibacillus polymyxa ZJ-9. Applied biochemistry and biotechnology, 2014, vol. 173, no. 6, pp. 1419-1430. DOI:https://doi.org/10.1007/s12010-014-0950-y. ; ; EDN: https://elibrary.ru/UUHMIH

10. Tsujimoto Y., Watanabe A., Nakano K., Watanabe K., Matsui H., Tsuji K., Suzuki Y. Gene cloning, expression, and crystallization of a thermostable exo-inulinase from Geobacillus stearothermophilus KP1289. Applied microbiology and biotechnology, 2003, vol. 62, no. 2-3, pp. 180-185. DOI:https://doi.org/10.1007/s00253-003-1261-3. ; ; EDN: https://elibrary.ru/MERMAT

11. Nierman W.C., Pain A., Anderson M.J., Wortman J.R., Kim H.S., Arroyo J., Berriman M., Abe K., Archer D.B., Bermejo C., Bennett J., Bowyer P., Chen D., Collins M., Coulsen R., Davies R., Dyer P.S., Farman M., Fedorova N., Fedorova N., Feldblyum T.V. [et al.] Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, vol. 438, no. 7071, p. 1151. DOI:https://doi.org/10.1038/nature04332. ; ; EDN: https://elibrary.ru/LTMSTF

12. Chen H.Q., Chen X.M., Li Y., Wang J., Jin Z.Y., Xu X.M., Xie Z.J. Purification and characterisation of exo-and endo-inulinase from Aspergillus ficuum JNSP5-06. Food Chemistry, 2009, vol. 115, no. 4, pp. 1206-1212. DOI:https://doi.org/10.1016/j.foodchem.2009.01.067. ; ; EDN: https://elibrary.ru/MERMIV

13. Arand M., Golubev A.M., Neto J.B., Polikarpov I., Wattiez R., Korneeva O.S., Chepurnaya, O.V. Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori. Biochemical Journal, 2002, vol. 362, no. 1, pp. 131-135. DOI:https://doi.org/10.1042/bj3620131. ; DOI: https://doi.org/10.1042/0264-6021:3620131; EDN: https://elibrary.ru/LHPHNB

14. Wang J.-H., Teng D., Yao Y. URL: https://www.ncbi.nlm.nih.gov/protein/AAN64131.1.

15. Yang J.K., Zhang J.W., Mao L., You X., Xiong W. URL: https://www.ncbi.nlm.nih.gov/protein/ANY59682.

16. Yuan X.L., Goosen C., Kools H., van der Maarel M.J., van den Hondel C.A. J., Dijkhuizen L., Ram A.F. Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology, 2006, vol. 152, no. 10, pp. 3061-3073. DOI:https://doi.org/10.1099/mic.0.29051-0. ; ; EDN: https://elibrary.ru/MHSFGB

17. Lu W.-D. URL: https://www.ncbi.nlm.nih.gov/protein/AGR40655.1.

18. Liebl W., Brem D., Gotschlich A. Analysis of the gene for β-fructosidase (invertase, inulinase) of the hyperthermophilic bacterium Thermotoga maritima, and characterisation of the enzyme expressed in Escherichia coli. Applied Microbiology and Biotechnology, 1998, vol. 50, no. 1, pp. 55-64. DOI:https://doi.org/10.1007/s002530051256. ; ; EDN: https://elibrary.ru/FIKISP

19. Schwebel-Dugué N., El Mtili N., Krivitzky M., Jean-Jacques I., Williams J.H., Thomas M., Lecharny A. Arabidopsis gene and cDNA encoding cell-wall invertase. Plant physiology, 1994, vol. 104, no. 2, p. 809.

20. Van den Ende W., Michiels A., Van Wonterghem D., Clerens S.P., De Roover J., Van Laere A.J. Defoliation induces fructan 1-exohydrolase II in witloof chicory roots. Cloning and purification of two isoforms, fructan 1-exohydrolase IIa and fructan 1-exohydrolase IIb. Mass fingerprint of the fructan 1-exohydrolase II enzymes. Plant Physiology, 2001, vol. 126, no. 3, pp. 1186-1195. DOI:https://doi.org/10.1104/pp.126.3.1186.

21. Yao Y.H., Hsieh Y.Y., Hsieh C.Y., Lin C.H., Chiang C.M. URL: https://www.ncbi.nlm.nih.gov/protein/ ADK46938.1.

22. Altschul S.F., Madden T.L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 1997, vol. 25, no. 17, pp. 3389-3402. DOI:https://doi.org/10.1093/nar/25.17.3389.


Login or Create
* Forgot password?