I.M. Sechenov First Moscow State Medical University
Macquarie University
Moscow, Moscow, Russian Federation
The colloidal stability of nanoparticles (NPs) plays a key role in their successful usage in various biomedical applications. No matter how well their properties are studied under idealized conditions, everything can change dramatically while interacting with biological objects. In a living organism, NPs are primarily met by proteins, which form a so-called protein corona on their surface. Although in most cases NPs interact with many proteins simultaneously, studies of the interactions of NPs with individual proteins, as well as the consequences to which they lead, are still relevant. In this work, the effect of the surface coating of upconversion nanoparticles (UCNPs) on colloidal stability in transferrin (Tf) solutions was investigated. It is shown that in case of positively charged UCNP-PEI, Tf plays the role of a coagulant and leads to the precipitation of NPs. At the same time, the colloidal stability of negatively charged UCNP-PAA depends on the number of Tf molecules per one NP. So with an excess of Tf in the solution, a monolayer of protein is observed on the surface of UCNP-PAA, which ensures their colloid stability and can be used in the development of theranostics agents capable of overcoming the blood-brain barrier.
protein corona, upconversion nanoparticles, transferrin, fluorescence correlation spectroscopy, aggregation
1. Nel A.E., Madler L., Velegol D., Xia T., Hoek E. M. V., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 2009, vol. 8, no. 7, pp. 543-557. DOI:https://doi.org/10.1038/nmat2442.
2. Grebenik E.A., Kostyuk A.B., Deyev S.M. Upconversion nanoparticles and their hybrid assemblies for biomedical applications. Russian Chemical Reviews, 2016, vol. 85, no. 12, pp. 1277-1296. DOI:https://doi.org/10.1070/rcr4663.
3. Gu Z.J., Yan L., Tian G., Li S.J., Chai Z.F., Zhao Y.L. Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications. Advanced Materials, 2013, vol. 25, no. 28, pp. 3758-3779. DOI:https://doi.org/10.1002/adma.201301197.
4. DaCosta M.V., Doughan S., Han Y., Krull U.J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Analytica Chimica Acta, 2014, vol. 832, pp. 1-33. DOI:https://doi.org/10.1016/j.aca.2014.04.030.
5. Zhao L., Kutikov A., Shen J., Duan C.Y., Song J., Han G. Stem Cell Labeling using Polyethylenimine Conjugated (alpha-NaYbF4:Tm3+)/CaF2 Upconversion Nanoparticles. Theranostics, 2013, vol. 3, no. 4, pp. 249-257. DOI:https://doi.org/10.7150/thno.5432.
6. Chen G.Y., Qju H.L., Prasad P.N., Chen X.Y. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chemical Reviews, 2014, vol. 114, no. 10, pp. 5161-5214. DOI:https://doi.org/10.1021/cr400425h.
7. Fan W.P., Bu W.B., Shi J.L. On The Latest Three-Stage Development of Nanomedicines based on Upconversion Nanoparticles. Advanced Materials, 2016, vol. 28, no. 21, pp. 3987-4011. DOI:https://doi.org/10.1002/adma.201505678.
8. Liu B., Chen Y.Y., Li C.X., He F., Hou Z.Y., Huang S.S., Zhu H.M., Chen X.Y., Lin J. Poly(Acrylic Acid) Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery. Advanced Functional Materials, 2015, vol. 25, no. 29, pp. 4717-4729. DOI:https://doi.org/10.1002/adfm.201501582.
9. Salvati A., Pitek A.S., Monopoli M.P., Prapainop K., Bombelli F.B., Hristov D.R., Kelly P.M., Aberg C., Mahon E., Dawson K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 2013, vol. 8, no. 2, 137-143. DOI:https://doi.org/10.1038/nnano.2012.237.
10. Rocker C., Potzl M., Zhang F., Parak W.J., Nienhaus G.U.A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nature Nanotechnology, 2009, vol. 4, no. 9, pp. 577-580. DOI:https://doi.org/10.1038/nnano.2009.195.
11. Jiang X., Weise S., Hafner M., Rocker C., Zhang F., Parak W.J., Nienhaus G.U. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. Journal of the Royal Society Interface, 2010, vol. 7, pp. S5-S13. DOI:https://doi.org/10.1098/rsif.2009.0272.focus.
12. Gebauer J.S., Malissek M., Simon S., Knauer S.K., Maskos M., Stauber R.H., Peukert W., Treuel L. Impact of the Nanoparticle-Protein Corona on Colloidal Stability and Protein Structure. Langmuir, 2012, vol. 28, no. 25, pp. 9673-9679. DOI:https://doi.org/10.1021/la301104a.
13. Bharti B., Meissner J., Findenegg G. H. Aggregation of Silica Nanoparticles Directed by Adsorption of Lysozyme. Langmuir, 2011, vol. 27, no. 16, pp. 9823-9833. DOI:https://doi.org/10.1021/la201898v.
14. Cukalevski R., Ferreira S.A., Dunning C.J., Berggard T., Cedervall T. IgG and fibrinogen driven nanoparticle aggregation. Nano Research, 2015, vol. 8, no. 8, pp. 2733-2743. DOI:https://doi.org/10.1007/s12274-015-0780-4.
15. Ho Y.T., Azman N.A., Loh F.W.Y., Ong G.K.T., Engudar G., Kriz S.A., Kah J.C.Y. Protein Corona Formed from Different Blood Plasma Proteins Affects the Colloidal Stability of Nanoparticles Differently. Bioconjugate Chemistry, 2018, vol. 29, no. 11, pp. 3923-3934. DOI:https://doi.org/10.1021/acs.bioconjchem.8b00743.
16. Huhn J., Fedeli C., Zhang Q., Masood A., del Pino P., Khashab N.M., Papini E., Parak W.J. Dissociation coefficients of protein adsorption to nanoparticles as quantitative metrics for description of the protein corona: A comparison of experimental techniques and methodological relevance. International Journal of Biochemistry & Cell Biology, 2016, vol. 75, pp. 148-161. DOI:https://doi.org/10.1016/j.biocel.2015.12.015.
17. Shang L., Nienhaus G.U. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy. Accounts of Chemical Research, 2017, vol. 50, no. 2, pp. 387-395. DOI:https://doi.org/10.1021/acs.accounts.6b00579.
18. Wang Z.Q., Tian Z.M., Dong Y., Li L., Tian L., Li Y.Q., Yang B.S. Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery. Diamond and Related Materials, 2015, vol. 58, pp. 84-93. DOI:https://doi.org/10.1016/j.diamond.2015.06.008.
19. Deshpande P., Jhaveri A., Pattni B., Biswas S., Torchilin V. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Delivery, 2018, vol. 25, no. 1, pp. 517-532. DOI:https://doi.org/10.1080/10717544.2018.1435747.
20. Wang D., Zhu L., Pu Y., Wang J.X., Chen J.F., Dai L.M. Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging. Nanoscale, 2017, vol. 9, no. 31, pp. 11214-11221. DOI:https://doi.org/10.1039/c7nr03019c.
21. Zhao J.B., Jin D.Y., Schartner E.P., Lu Y.Q., Liu Y.J., Zvyagin A.V., Zhang L.X., Dawes J.M., Xi P., Piper J.A., Goldys E.M., Monro T.M. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nature Nanotechnology, 2013, vol. 8, no. 10, pp. 729-734. DOI:https://doi.org/10.1038/nnano.2013.171.
22. Dong A. G., Ye X. C., Chen J., Kang Y. J., Gordon T., Kikkawa J. M., Murray C. B. A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals. Journal of the American Chemical Society, 2011, vol. 133, no. 4, pp. 998-1006. DOI:https://doi.org/10.1021/ja108948z.
23. Ruttinger S., Buschmann V., Kramer B., Erdmann R., Macdonald R., Koberling F. Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. Journal of Microscopy, 2008, vol. 232, no. 2, pp. 343-352. DOI:https://doi.org/10.1111/j.1365-2818.2008.02105.x.
24. Wehry E. L. Principles of fluorescence spectroscopy - Lakowicz,Jr. American Scientist, 1984, vol. 72, no. 4, pp. 395-396.
25. Armstrong J. K., Wenby R. B., Meiselman H. J., Fisher T. C. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophysical Journal, 2004, vol. 87, no. 6, pp. 4259-4270. DOI:https://doi.org/10.1529/biophysj.104.047746.
26. Mahmoudi M., Abdelmonem A. M., Behzadi S., Clement J. H., Dutz S., Ejtehadi M. R., Hartmann R., Kantner K., Linne U., Maffre P., Metzler S., Moghadam M. K., Pfeiffer C., Rezaei M., Ruiz-Lozano P., Serpooshan V., Shokrgozar M. A., Nienhaus G. U., Parak W. J. Temperature: The "Ignored" Factor at the NanoBio Interface. Acs Nano, 2013, vol. 7, no. 8, pp. 6555-6562. DOI:https://doi.org/10.1021/nn305337c.