In the development of biophysics, a special place corresponds to concepts, or systems of views regarding processes occurring in a living cell. Precisely, a systematic view of such processes leads us to an understanding of the phenomenon of life. In the twentieth century, the staff and co-authors of the Department of Biophysics at the Faculty of Physics of Moscow “Lomonosov” University developed a number of concepts that allow to take a fresh look at the processes occurring in a cell. The concept of “Protein Machine” (Shnoll, Chernavsky, Khurgin) was confirmed in the works of many authors, including Lev Blumenfeld and Alexander Tikhonov. The concept of hierarchy of forces and interactions (Esipova) formed the basis of the original course of lectures on the physics of biopolymers, which has been delivered at the Department for more than forty years and was further developed in the works of Natalia Esipova, Vladimir Tumanyan and Vladimir Namiot. The concept of matrix recognition, developed in the works of Georgy Gursky, Alexander Zasedatelev and collaborators, was confirmed in the cycle of works on the interaction of ligands with DNA and led to a number of important results - from the construction of molecular and thermodynamic models of ligand binding to DNA to the discovery of the allosteric effect of DNA. In recent years, the concept of chirality (Vsevolod Tverdislov) has been developed, which makes it possible to take a new look at the system of macromolecular interactions in the cell. The concept of cosmic-physical factors, developed earlier by Simon Shnoll, has found further development and a number of interesting applications. The department has formed specialists from other countries, such as Germany, Poland, Slovakia, Iraq and Cuba. Most of them still continue their research in the field of molecular biophysics. With the assistance of Simon Shnoll, the department developed a model of chemical oscillations, known in the world scientific literature as the Belousov-Zhabotinsky Reaction, one of the classic examples of biophysical of nonlinear systems.
molecular machines, hierarchies of structures, cooperativity, allosteric effects, DNA-protein interactions, cosmic-physical factors
1. Chernavskiy D.S., Hurgin Yu.I., Shnol' S.E. Molekula belka-fermenta kak mehanicheskaya sistema Molekulyarnaya biologiya, 1967, t. 1, s. 419-425. @@[Chernavskii D.S., Khurgin Y.I., Shnoll S.E. The molecule of enzyme as a mechanical system. Mol. Biol. (Moscow), 1967, no. 1, pp. 419-425. (In Russ.)]
2. Blyumenfel'd L.A. Reshaemye i nereshaemye problemy biologicheskoy fiziki. URSS, 2010, 160 s. @@[Blumenfeld L.A. Solvable and unsolvable problems of biological physics. USSR, 2010, 160 p. (In Russ)].
3. Nechiporenko Yu., Rezhabek B. Nanoroboty zhivoy kletki. Biomolekula, 2017. URL: https://biomolecula.ru/articles/nanoroboty-i-zhizn. @@[Nechiporenko Yu., Rezhabek B. Living Cell Nanorobots. Biomolecula, 2007, URL: https://biomolecula.ru/articles/nanoroboty-i-zhizn. (In Russ.)]
4. Romanovskiy Yu.M., Tihonov A.N. Molekulyarnye preobrazovateli energii zhivoy kletki. Protonnaya ATF-sintaza - vraschayuschiysya molekulyarnyy motor. Uspehi fizicheskih nauk, 2010, t. 180, s. 931-956. @@[Romanovsky Y.M., Tikhonov A.N. Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor. Physics-Uspekhi, 2010, vol. 53, pp. 893-914.]
5. Blumenfeld L.A., Tikhonov A.N. Biophysical Thermodynamics of Intracellular Processes. Molecular Machines of the Living Cell. Springer-Verlag, New York, 1994.
6. Namiot V.A., Batyanovskiy A.V., Filatov I.V., Tumanyan V.G. Dal'nodeystvuyuschie vzaimodeystviya i principy molekulyarnogo raspoznavaniya na raznyh urovnyah stroeniya biosistem. Biofizika, 2016, t. 61, s. 54-59. @@[Namiot V.A., Batyanovskii A.V., Filatov I.V., Tumanyan V.G., Esipova N.G. Long-Distance Interactions and Principles of Molecular Recognition at Various Biosystem Organization Levels. Biophysics, 2016, vol. 61, pp. 47-51.] ; EDN: https://elibrary.ru/VWBAMX
7. Batyanovskiy A.V., Namiot V.A., Filatov I.V., Moldaver M.V., Anashkina A.A., Tumanyan V.G., Esipova N.G., Volotovskiy I.D. Konformacionno-stabil'nye segmenty v spiral'nyh strukturah polipeptidnyh cepey belkov i ih rol' pri formirovanii struktur vysshih urovney. Biofizika, 2013, t. 58, s. 1969-1973. @@[Batianovsky A.V., Namiot V.A., Filatov I.V., Moldaver M.V., Anashkina A.A., Tumanyan V.G., Esipova N.G., Volotovsky I.D. Conformational-stable segments in the helical structures of polypeptide chains of proteins and their role in the formation of higher-level structures. Biofizika, 2013, vol. 58, pp. 1969-1973. (In Russ.)] ; EDN: https://elibrary.ru/RTEDPV
8. Tvepdiclov V.A. Hipal'noct' kak pepvichnyy pepeklyuchatel' iepapxicheckix upovney v molekulyapno-biologicheckix cictemax. Biofizika, 2013, t. 58, s. 159-164. @@[Tverdislov V.A. Chirality as a primary switch of hierarchical levels in molecular biological systems. Biophysics, 2013, vol. 58, pp. 128-132.] ; EDN: https://elibrary.ru/PXQCKN
9. Tverdislov V.A., Malyshko E.V. O zakonomernostyah spontannogo formirovaniya strukturnyh ierarhiy v hiral'nyh sistemah nezhivoy i zhivoy prirody. Uspehi fizicheskih nauk, 2019, t. 189, s. 375-385. @@[Tverdislov V.A., Malyshko E.V. On regularities in the spontaneous formation of structural hierarchies in chiral systems of nonliving and living matter. Physics-Uspekhi, 2019, vol. 62, pp. 354-364.] ; DOI: https://doi.org/10.3367/UFNr.2018.08.038401; EDN: https://elibrary.ru/GRGOPE
10. Gurskiy G.V., Tumanyan V.G., Zasedatelev A.S., Zhuze A.L., Grohovskiy S.L., Gottih B.P. Kod, upravlyayuschiy specificheskim svyazyvaniem regulyatornyh belkov s DNK, i struktura stereospecificheskih uchastkov regulyatornyh belkov. Molekulyarnaya biologiya, 1975, t. 9, s. 635-651. @@[Gurskiĭ G.V., Tumanian V.G., Zasedatelev A.S., Zhuze A.L., Grokhovskiĭ S.L., Gottikh B.P. A code governing specific binding of regulatory proteins to DNA and structure of stereospecific sites of regulatory proteins. Molekuliarnaia biologia, 1975, vol. 9, pp. 635-651. (In Russ.)]
11. Krylov A.S., Zasedatelev A.S., Grokhovsky S.L., Zhuze A.L., Gursky G.V. and Gottich B.P. Quantitive estimation of the contribution of pyrrolcarboxamide groups of the antibiotic distamycin A into specificity of its binding to DNA AT pairs. Nucl. Acids Res., 1979, vol. 6, pp. 289-304.
12. Gursky G.V., Zasedatelev A.S., Zhuze A.L., Khorlin A.A., Grokhovsky S.L., Streltsov S.A., Surovaya A.N., Nikitin S.M., Krylov A.S., Retchinsky V.O., Mikhailov M.V., Beabealashvili R.S., Gottich B.P. Synthetic sequence-specific ligands. Cold Spring Harbor Symp. Quant. Biol., 1983, vol. 47, pp. 367-378.
13. Nechipurenko Yu.D., Gurskiy G.V. Termodinamicheskie modeli svyazyvaniya ligandov s DNK. Biofizika, 2003, t. 48, s. 773-796. @@[Nechipurenko Yu.D., Gursky G.V. Thermodynamic models of ligand binding to nucleic acids. Biophysics, 2003, vol. 48, pp. 717-740.] ; EDN: https://elibrary.ru/OOKAPV
14. Nechipurenko Yu.D. Analiz svyazyvaniya biologicheski aktivnyh soedineniy s nukleinovymi kislotami. Moskva-Izhevsk, IKI, 2015, 188 s. @@[Nechipurenko Yu.D. Analysis of the binding of biologically active compounds with nucleic acids. Moscow-Izhevsk, IKI, 2015. 188 p. (In Russ.)] ; EDN: https://elibrary.ru/ULPNXR
15. Hogan M., Dattagupta N., Crothers D.M. Transmission of allosteric effects in DNA. Nature. 1979, vol. 278, p. 521.
16. Nechipurenko Yu.D. Primenenie statisticheskoy termodinamiki dlya analiza svyazyvaniya ligandov s DNK i oligonukleotidov na mikrochipah. V sbornike: Fiziko-himicheskie mehanizmy i regulyaciya processov transformacii energii v biologicheskih strukturah. M.-Izhevsk: IKI, 2017, 522 s. @@[Nechipurenko Yu.D. The use of statistical thermodynamics to analyze the binding of ligands to DNA and oligonucleotides on microchips. In the collection: Physical and chemical mechanisms and regulation of energy transformation processes in biological structures. Moscow-Izhevsk: IKI, 2017, 522 p. (In Russ.)]
17. Stirmanov Y.V., Matveeva O.V., Nechipurenko Y.D. Two-dimensional Ising Model for Microarray Hybridization: Cooperative Interactions between Bound Target Molecules. Journal of Biomolecular Structure and Dynamics, 2018, vol. 37, pp. 3103-3108.
18. Shnoll S.E. Cosmophysical Factors in Stochastic Processes. ARPR, New Mexico, USA, 2012, 433 p.
19. Evtugyn G., Porfireva A., Stepanova V., Sitdikov R., Stoikov I., Nikolelis D., Hianik T. Electrochemical aptasensor based on polycarboxylic macrocycle modified with Neutral red for aflatoxin B1 detection. Electroanalysis, 2014, vol. 26, pp. 2100-2109. ; DOI: https://doi.org/10.1002/elan.201400328; EDN: https://elibrary.ru/UFWCWN
20. Lüersen K, Eschbach ML, Haider N, Karlberg T, Walter RD, Al-Karadaghi S. Cloning, expression, characterisation and three-dimensional structure determination of Caenorhabditis elegans spermidine synthase. FEBS letters, 2005, vol. 579, pp. 6037-43.
21. Dufe V.T., Qiu W., Müller I.B., Hui R., Walter R.D., Al-Karadaghi S. Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. Journal of Molecular Biology, 2007, vol. 373, pp. 167-77. ; DOI: https://doi.org/10.1016/j.jmb.2007.07.053; EDN: https://elibrary.ru/KFUGLH
22. Bittner M-I., Wiedenmann N., Bucher S., Hentschel M., Mix M., Rücker G., Weber W.A., Meyer P.T., Werner M., Grosu A-L., Kayser G. Analysis of relation between hypoxia PET imaging and tissue-based biomarkers during head and neck radiochemotherapy, Acta Oncologica, 2016, DOI:https://doi.org/10.1080/0284186X.2016.1219046.
23. Prenosil G.A., Weitzel T., Hentschel M., Klaeser B., Krause T. Transconvolution and the virtual positron emission tomography - A new method for cross calibration in quantitative PET/CT imaging. Med. Phys., 2013, vol. 40, p. 062503.
24. Cosic I., Caceres J.L.H., Cosic D. Possibility to interfere with malaria parasite activity using specific electromagnetic frequencies. EPJ Nonlinear Biomedical Physics, 2016, vol. 3, p. 11.