Sevastopol, Russian Federation
The self-association of unmodified C60 fullerene and its complexation with chemotherapeutic drugs (in particular, doxorubicin, cisplatin and landomycin A) in aqueous solution are considered as a possible key stage of the in vivo and in vitro biological synergy mechanism observed with the combined use of drugs with C60 fullerene. A complete characterization of the aqueous fullerene solution has been performed; hypotheses have been put forward on the nature of the intermolecular forces stabilizing the fullerene conglomerates. The sizes of fullerene clusters were estimated, and this parameter was compared with the biological activity of the drug and its complexes with other biologically active compounds. For the first time, a mathematical model is proposed for calculating the thermodynamic parameters of fullerene aggregation. The results of the application of various physicochemical methods are analyzed, which makes it possible for better understanding the nature of the forces stabilizing the complexes of fullerene C60 with these drugs. A physicochemical mechanism is proposed which allows, at least partially, explain the biological interaction of the drug C60.
fullerene C60, antibiotic, aqueous solution, aggregation
1. Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Series: Carbon Materials: Chemistry and Physics. F. Cataldo and T. Da Ros (Eds.), Springer, Netherlands, 2008.
2. Anilkumar P., Lu F., Cao L. et al. Fullerenes for applications in biology and medicine. Current Med. Chem., 2011, vol. 18, p. 2045.
3. Turov V.V., Chehun V.F., Krupskaya T.V. et al. Effect of small addition of C60 fullerenes on the hydrated properties of nanocomposites based on highly dispersed silica and DNA. Chem. Phys. Lett., 2010, vol. 496, p. 152.
4. Foley S., Crowley C., Smaihi M. et al. Cellular localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun., 2002, vol. 294, p. 116.
5. Prylutska S., Bilyy R., Overchuk M. et al. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J. Biomed. Nanotechnol., 2012, vol. 8, p. 522.
6. Prylutska S.V., Grynyuk I.I., Matyshevska O.P. et al. Anti-oxidant properties of C60 fullerenes in vitro. Fullerenes Nanotubes Carbon Nanostruct., 2008, vol. 16, p. 698.
7. Andrievsky G., Klochkov V., Derevyanchenko L. Is the C60 fullerene molecule toxic?! Fullerenes Nanotubes Carbon Nanostruct., 2005, vol. 13, p. 363.
8. Levi N., Hantgan R., Lively M. et al. C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J. Nanobiotechnol., 2006, vol. 4, p. 14.
9. Prylutska S.V., Matyshevska O.P., Golub A.A. et al. Study of S60 fullerenes and S60-containing composites cytotoxicity in vitro. Mater. Sci. Engineer C, 2007, vol. 27, p. 1121.
10. Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol., 2007, vol. 620, p. 168.
11. Prylutska S.V., Burlaka A.P., Prylutskyy Yu.I. et al. Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Exp. Oncol., 2011, vol. 33, p. 162.
12. Prylutska S.V., Burlaka A.P., Klymenko P.P. et al. Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol., 2011, vol. 2, p. 105.
13. Panchuk R.R., Prylutska S.V., Chumak V.V. et al. Application of S60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J. Biomed. Nanotechnol., 2015, vol. 11, p. 1139.
14. Prylutska S., Skivka L., Didenko G. et al. Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy. Nanoscale Res. Lett., 2015, vol. 10, p. 499.
15. Prylutska S.V., Korolovych V.F., Prylutskyy Yu.I. et al. Tumor-inhibitory effect of C60 fullerene complex with doxorubicin. Nanomed. Nanobiol., 2015, vol. 2, p. 49.
16. Avdeev M.V., Khokhryakov A.A., Tropin T.V. et al. Structural features of molecular-colloidal solutions of C60 fullerenes in water by small-angle neutron scattering. Langmuir, 2004, vol. 20, p. 4363.
17. Mchedlov-Petrossyan N.O. Fullerenes in liquid media: an unsettling intrusion into the solution chemistry. Chem. Rev., 2013, vol. 113, p. 5149.
18. Rud Yu., Buchatskyy L., Prylutskyy Yu. et al. Using C60 fullerenes for photodynamic inactivation of mosquito iridescent viruses. J. Enzyme Inhib. Med. Chem., 2012, vol. 27, p. 614.
19. Chen Z., Mao R., Liu Y. Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr. Drug Metabolism, 2012, vol. 13, p. 1035.
20. Andrievsky G.V., Kosevich M.V., Vovk O.H. et al. On the production of an aqueous colloidal solution of fullerenes. J. Chem. Soc. Chem. Commun., 1995, vol. 12, p. 1281.
21. Deguchi S., Alargova R.G., Tsujii K. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization. Langmuir, 2001, vol. 17, p. 6013.
22. Prylutskyy Yu.I., Durov S.S., Bulavin L.A. et al. Structure and thermophysical properties of fullerene C60 aqueous solutions. Int. J. Thermophys., 2001, vol. 22, p. 943.
23. Bulavin L., Adamenko I., Prylutskyy Y. et al. Structure of fullerene C60 in aqueous solution. Phys. Chem. Chem. Phys., 2000, vol. 2, p. 1627.
24. Andrievsky G.V., Klochkov V.K., Karyakina E.L. et al. Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy. Chem. Phys. Lett., 1999, vol. 300, p. 392.
25. Ritter U., Prylutskyy Yu.I., Evstigneev M.P. et al. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes Nanotubes Carbon Nanostruct., 2015, vol. 23, p. 530.
26. Andrievsky G.V., Klochkov V.K., Bordyuh A.B., Dovbeshko G.I. Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem. Phys. Lett., 2002, vol. 364, p. 8.
27. Prilutski Y., Durov S., Bulavin L. et al. Study of structure of colloidal particles of fullerenes in water solution. Mol. Cryst. Liq. Cryst., 1998, vol. 324, p. 65.
28. Scharff P., Risch K., Carta-Abelmann L. et al. Structure of C60 fullerene in water: spectroscopic data. Carbon, 2004, vol. 42, p. 1203.
29. Labille J., Brant J., Villieras F. et al. Affinity of C60 fullerenes with water. Fullerenes Nanotubes Carbon Nanostruct., 2006, vol. 14, p. 307.
30. Chen K.L., Elimelech M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ. Sci. Technol., vol. 43, p. 7270.
31. Brant J., Lecoanet H., Wiesner M.R. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J. Nanopart. Res., 2005, vol. 7, p. 545.
32. Chen K.L., Elimelech M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 2006, vol. 22, p. 10994.
33. Brant J.A., Labille J., Bottero J.Y., Wiesner M.R. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir, 2006, vol. 22, p. 3878.
34. Labille J., Masion A., Ziarelli F. et al. Hydration and dispersion of C60 in aqueous systems: the nature of water-fullerene interactions. Langmuir, 2009, vol. 25, p. 11232.
35. Prylutskyy Yu.I., Petrenko V.I., Ivankov O.I. et al. On the origin of C60 fullerene solubility in aqueous solution. Langmuir, 2014, vol. 30, p. 3967.
36. Wierzbicki M., Sawosz E., Grodzik M. et al. Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Res. Lett., 2013, vol. 8, p. 195.
37. Mchedlov-Petrossyan N.O., Klochkov V.K., Andrievsky G.V. Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes. J. Chem. Soc. Faraday Trans., 1997, vol. 93, p. 4343.
38. Meng Z., Hashmi S.M., Elimelech M. Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement. J. Colloid Interface Sci., 2013, vol. 392, p. 27.
39. Khokhryakov A.O., Avdeev M.V., Aksenov V.L., Bulavin L.A. Structural organization of colloidal solution of fullerene C60 in water by data of small angle neutron scattering. J. Mol. Liq., 2006, vol. 127, p. 73.
40. Li L., Bedrov D., Smith G. A molecular-dynamics simulation study of solvent-induced repulsion between C60 fullerenes in water. J. Chem. Phys., 2005, vol. 123, p. 204504.
41. Li L., Bedrov D., Smith G.D. Water-induced interactions between carbon nanoparticles. J. Phys. Chem. B, vol. 110, p. 10509.
42. Wang C.I., Hua C.C., Chen S.A. Dynamic solvation shell and solubility of C60 in organic solvents. J. Phys. Chem. B, vol. 118, p. 9964.
43. Choi J., Snow S.D., Kim J.-H., Jang S.S. Interaction of C60 with water: first-principles modeling and environmental implications. Environ. Sci. Technol., 2015, vol. 49, p. 1529.
44. Montellano A., Da Ros T., Bianco A., Prato M. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale, 2011, vol. 3, p. 4035.
45. Li Z.-Q., Zhang Y.-M., Guo D.-S. et al. Supramolecular assembly with multiple preorganised π-electronic. Cages Chem. Eur. J., 2013, vol. 19, p. 96.
46. Lyon D.Y., Adams L.K., Falkner J.C., Alvarez P.J. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. J. Environ. Sci. Tech., 2006, vol. 40, p. 4360.
47. Song M., Liu S., Yin J., Wang H. Interaction of human serum album and C60 aggregates in solution. Int. J. Mol. Sci., 2011, vol. 12, p. 4964.
48. Zhao X., Striolo A., Cummings P.T. C60 binds to and deforms nucleotides. Biophys. J., 2005, vol. 89, p. 3856.
49. Prylutskyy Yu.I., Buchelnikov A.S., Voronin D.P. et al. C60 fullerene aggregation in aqueous solution. Phys. Chem. Chem. Phys., vol. 15, p. 9351.
50. Voronin D.P., Buchelnikov A.S., Kostjukov V.V. et al. Evidence of entropically driven C60 fullerene aggregation in aqueous solution. J. Chem. Phys., 2014, vol. 140, p. 104909.
51. Walther J.H., Jaffe R.L., Kotsalis E.M. et al. Hydrophobic hydration of C60 and carbon nanotubes in water. Carbon, 2004, vol. 42, p. 1185.
52. Hazafy D., Salvia M.-V., Mills A. et al., NMR analysis of Nile Blue (C. I. Basic Blue 12) and Thionine (C. I. 52000) in solution. Dyes Pigments, 2011, vol. 88, p. 315.
53. Santiago A.A.H., Buchelnikov A.S., Rubinson M.A. et al. Shape-independent model (SHIM) approach for studying aggregation by NMR diffusometry. J. Chem. Phys., 2015, vol. 142, p. 104202.
54. Corti M., Degiorgio V. Quasi-elastic light scattering study of intermicellar interactions in aqueous sodium dodecyl sulfate solutions. J. Phys. Chem., 1981, vol. 85, p. 711.
55. Attwood D., Blundell R., Mosquera V. Light scattering studies on the association of phenothiazine drugs in aqueous solutions of low ionic strength. J. Colloid Interface Sci., vol. 157, p. 50.
56. Lu F., Haque S.A., Yang S.-T. et al. Aqueous compatible fullerene-doxorubicin conjugates. J. Phys. Chem. C, 2009, vol. 113, p. 17768.
57. Liu J.-H., Cao L., Luo P.G., et al. Fullerene-conjugated doxorubicin in cells. Appl. Mater. Interfaces, 2010, vol. 2, p. 1384.
58. Evstigneev M.P. Hetero-association of aromatic molecules in aqueous solution. Int. Rev. Phys. Chem., 2014, vol. 33, p. 229.
59. Prylutskyy Yu., Borowik A., Gołuński G. et al. Biophysical characterization of the complexation of C60 fullerene with doxorubicin in a prokaryotic model. Mat.-wiss. u Werkstofftech, 2016, vol. 47, p. 92.
60. Prylutska S., Grynyuk I., Matyshevska O. et al. C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R&D, 2014, vol. 14, p. 333.
61. Skamrova G.B., Laponogov I.V., Buchelnikov A.S. et al. Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules. Eur. Biophys. J., 2014, vol. 43, p. 265.
62. Prylutska S., Panchuk R., Gołuński G. et al. S60 fullerene enhances anticancer activity and overcomes tumor cells drug resistance. Nano Res., 2017, vol. 10, p. 652.
63. Evstigneev M.P., Buchelnikov A.S., Voronin D.P. et al. Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem., vol. 14, p. 568.
64. Buchelnikov A.S., Kostyukov V.V., Yevstigneev M.P., Prylutskyy Yu.I. Mechanism of complexation of the phenothiazine dye methylene blue with fullerene C60. Russ. J. Phys. Chem. A, 2013, vol. 87, p. 662.
65. Prylutskyy Yu.I., Evstigneev M.P., Pashkova I.S. et al. Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys. Chem. Chem. Phys., 2014, vol. 16, p. 23164.
66. Prylutskyy Yu.I., Evstigneev M.P., Cherepanov V.V. et al. Structural organization of S60 fullerene, doxorubicin and their complex in physiological solution as promising antitumor agents. J. Nanopart. Res., 2015, vol. 17, p. 45.
67. Prylutskyy Yu.I., Cherepanov V.V., Evstigneev M.P. et al. Structural self-organization of C60 and cisplatin in physiological solution. Phys. Chem. Chem. Phys., 2015, vol. 17, p. 26084.
68. Rohr J., Hertweck C. Comprehensive Natural Products II - Chemistry and Biology. Mander L. and Liu H.-W. (Eds.). Elsevier: Oxford, 2010, pp. 227-303.
69. Ostash B., Korynevska A., Stoika R., Fedorenko V. Chemistry and biology of landomycins, an expanding family of polyketide natural products. Mini Rev. Med. Chem., 2009, vol. 9, p. 1040.
70. Kharel M.K., Pahari P., Shepherd M.D. et al. Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep., 2012, vol. 29, p. 264.
71. Lehka L.V., Panchuk R.R., Berger W. et al. The role of reactive oxygen species in tumor cells apoptosis induced by Landomycin A. Ukr. Biochem. J., 2015, vol. 87, p. 72.
72. Yang X., Fu B., Yu B. Total synthesis of Landomycin A, a potent antitumor angucycline antibiotic. J. Am. Chem. Soc., 2011, vol. 133, p. 12433
73. Dalavalle M., Leonzio M., Calvaresi M., Zerbetto F. Explaining fullerene dispersion by using micellar solutions. Chem. Phys. Chem., 2014, vol. 15, p. 2998.
74. Injac R., Perse M., Cerne M. et al. Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials, vol. 30, p. 1184.