Giant biodiversity is based on the gigantic molecular diversity of linear combinations of 20 amino acid residues in peptide structures. Their combination is a global proteome of the Earth. The amino acid sequences of ~200 million natural peptide structures have been decoded. It is believed that each of them is dedicated a specific role in a living organism. Despite such a significant number of known peptide molecules, a good part of the global proteome has not yet been deciphered. However, familiar information is already used for various analyses and generalizations. A large part of such analyses is devoted to the study of fragments representing the global proteome. Theoretically, the possible number of different peptide structures composed of only 50 amino acid residues is characterized by a value of ~1034. A huge number of such structure fragments served as the basis for the emergence of the concept of fragmentomics - a direction which studied the structure and functions of a set of protein fragments. These data have been collected and studied in the EROP-Moscow database for 30 years, and their number is more than 26,000 now. A large number of regulators of the nervous, endocrine and immune systems, as well as a variety of antimicrobial oligopeptides, enzyme inhibitors, and many others possessing specific physical and chemical features were among them. The analysis of the EROP-Moscow database information allowed us to conclude that regulatory oligopeptides arise from three sources. These are oligopeptide regulators cleaved from specialized endogenous precursors using special enzymes, ordinary endogenous protein polypeptides (for example, hemoglobin, albumin, etc.), cleaved by proteolytic enzymes to small fragments, as well as exogenous proteins or their fragments entering the body from the outside as a result of a meal or bite (e.g., insects They form in the organism a constantly changing pool of endogenous and exogenous substances of peptide nature (continuum), which is included in the functioning of all regulatory systems.
proteome, protein structures
1. Bairoch A., Boeckmann B. The SWISS-PROT protein sequence data bank. Nucleic Acids Res., 1991, vol. 19, Suppl., pp. 2247-2249, DOI:https://doi.org/10.1093/nar/19suppl.2247.
2. Bairoch A., Apweeilwr R. The SWISS-PROT Protein Sequence Data Bank and Its New Supplement TREMBL. Nucleic Acids Res., 1996, vol. 24, no. 1, pp. 21-25, DOI:https://doi.org/10.1093/nar/24.1.21.
3. Zamyatnin A.A., Belozerskaya T.A. Razmer prirodnyh lineynyh peptidnyh struktur. Aktual'nye voprosy biologicheskoy fiziki i himii, 2019, t. 4, № 3, s. 315-321. @@[Zamyatnin A.A., Belozerskaya T.A. Size of the natural linear peptide structutes. Modern trends in biological physics and chemistry, 2019, vol. 4, no. 3, pp. 225-235. (In Russ.)]
4. Zamyatnin A.A., Belozerskaya T.A. Multiple diversity of mitochondrial cytochrome b amino acid sequences of the same length in animals. Front. Mol. Biosci., 2020, p. e00102, DOI:https://doi.org/10.3389/fmolb.2020.00102.
5. Davis S.N., Torres C.R., Musser G.M., Proffitt J.V., Crouch N.M.A., Lundelius E.L., Lamanna M.C., Clarke J.A. New mammalian and avian records from the late eocene La Meseta and Submeseta formations of Seymour Island, Antarctica. PeerJ, 2020, vol. 8, p. e8268, DOI:https://doi.org/10.7717/peerj.8268.
6. Helgen K.M, Pinto CM, Kays R, Helgen LE, Tsuchiya MTN, Quinn A, Wilson DE, Maldonado JE. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the olinguito. ZooKeys, 2013, vol. 324, pp. 1-83, DOI:https://doi.org/10.3897/zookeys.324.5827.
7. Wilkins M. Proteomics data mining. Expert Review of Proteomics, 2009, vol. 6, no. 6, pp. 599-603. DOI: 10.1586/ epr.09.81.
8. Clynen E., Baggerman G, Veelaert D, Cerstiaens A, Van der Horst D, Harthoorn L, Derua R, Waelkens E, De Loof A, Schoofs L. Peptidomics of the pars intercerebralis-corpus cardiacum complex of the migratory locust, Locusta Migratori. Eur. J. Biochem. 2001, vol. 268, no. 7, pp. 1929-1939, DOI:https://doi.org/10.1046/j.1432-1327.2001.02067.x.
9. Zamyatnin A.A. Fragmentomics of oligopeptides and proteins. 4th International Peptide Symposium in conjunction with 7th Australian Peptide Symposium and 2nd Asia-Pacific International Peptide Symposium. Cairns, Australia, Conference Program and Abstracts, 2007, p. 130.
10. Zamyatnin A.A. Fragmentomika belkov i prirodnyh oligopeptidov. Biofizika, 2008, t. 53, № 5, c. 725-733. @@[Zamyatnin A.A. Fragmentomics of proteins and natural oligopeptides. Biophysics, 2008, vol. 53, no. 5, pp. 329-335. (In Russ.)].
11. Zamyatnin A.A. Fragmentomics of natural peptide structures. Biochemistry, 2009, vol. 74, no. 13, pp. 1575-1585, DOI:https://doi.org/10.1134/s0006297909130100.
12. Tuppy H. The amino acid sequence in oxytocin. Biochim. Biophys. Acta, 1953, vol. 11, no. 3, pp. 449-450.
13. du Vineaud V., Ressler C, Trippett S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. Biol. Chem., 1953, vol. 205, no. 2, pp. 949-957.
14. du Vigneaud V., Lowler H.C., Popenoe E.A. Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J. Am. Chem. Soc., 1953, vol. 75, no.19, pp. 4880-4881.
15. Sanger F., Thompson EOP. The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J., 1953, vol. 53, no. 3, pp. 353-366, DOI:https://doi.org/10.1042/bj0530353.
16. Sanger F., Thompson EOP. The amino-acid sequence in the glycyl chain of insulin. II. The identification of lower peptides from partial hydrolysates. Biochem J., 1953, vol. 53, no. 3, pp. 366-374, DOI:https://doi.org/10.1042/bj0530366.
17. Holowachuk E.W., Stoltenborg J.K., Reed R.G., Peters T.Jr. Submitted (AUG-1991) to the EMBL/GenBank/ DDBJ databases.
18. Brown J.R. Structure of bovine serum albumin. Fed. Proc., 1975, vol. 34, pp. 591-591.
19. Comb M.,, Seeburg P.H., Adelman J., Eiden L., Herbert E. Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA. Nature, 1982, vol. 295, no. 5851, pp. 663-666, DOI:https://doi.org/10.1038/295663a0.
20. Taussig R., Scheller R.H. The Aplysia FMRFamide gene encodes sequences related to mammalian brain peptides. DNA, 1986, vol. 5, no. 6, pp. 453-461. DOI:https://doi.org/10.1089/dna.1.1986.5.453.
21. Ivanov V.T., Karelin A.A., Mihaleva, I.I., Vas'kovskiy B.V., Sviryaev V.I., Nazimov I.V. Vydelenie, struktura i svoystva novyh endogennyh peptidov. Bioorg. Himiya, t. 18, № 10-11, s. 1271-1311. @@[Ivanov V.T., Karelin A.A., Mikhaleva I.I., Vaskovsky B.V., Sviryaev V.I., Nazimov I.V. Isolation, structure and properties of novel endogenous peptides. Bioorganicheskaia Khimiia, vol. 18, no. 10-11, pp. 1271-311. (In Russ.)]
22. Yang N., Anapindi K.D.B., Rubakhin S.S., Wei P., Yu Q., Li L., Kenny P.J., Sweedler J.V. Neuropeptidomics of the rat habenular nuclei. J. Proteome Res., 2018, vol. 17, no. 4, pp. 1463-1473, DOI:https://doi.org/10.1021/acs.jproteome.7b00811.
23. Palashoff M.H. Determining the specificity of pepsin for proteolytic digestion, Chemistry Master’s Theses, 2008, Paper 1, URL: http://hdl.handle.net/2047/d10016636.
24. Zamyatnin A.A., Voronina O.L. Fragmenty pischevyh belkov - regulyatornye oligopeptidy. Biohimiya, 2012, t. 77, № 5, s. 622-632. @@[Zamyatnin A.A., Voronina O.L. Food protein fragments are regulatory oligopeptides. Biochemistry (Moscow), 2012, vol. 77, no. 5, pp. 502-510. (In Russ.)]
25. Fogaca A.C., da Silva P.I.Jr, Miranda M.T., Bianchi A.G., Miranda A., Ribolla P.E., Daffre S. Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J. Biol. Chem., 1999, vol. 274, no. 36, pp. 25330-25334, DOI:https://doi.org/10.1074/jbc.274.36.25330.
26. Zamyatnin A. Structural-functional diversity of the natural oligopeptides. Progr. Biophys. Mol. Biol., 2018, vol. 133, pp. 1-8, DOI:https://doi.org/10.1016/j.pbiomolbio.2017.09.024.
27. Gulevitch V.S., Amiradzhibi S. Über das Carnosin, eine neue organische Base des Fleischextrakt. Deutsch. Chem. Ges, 1900, no. 33, pp. 1902-1903.
28. Zamyatnin A.A. Mesto karnozina sredi fiziologicheski aktivnyh veschestv peptidnoy prirody. Biohimiya, 1992. t. 57, № 9, s. 1296-1301. @@[Zamyatnin A.A. Place of carnosine among natural active peptide substances. Biokhimia, 1992. vol. 57, no 9, pp. 1296-1301. (In Russ.)]
29. Baumann L., Ingwaldsen T. Conserning histidine and carnosine. The synthesis of carnosine. J. Biol. Chem. 1918, vol. 35, no. 2, pp. 263-276.
30. Zamyatnin A.A. Specializirovannyy bank dannyh EROP-Moscow o svoystvah prirodnyh regulyatornyh oligopeptidov. Neyrohimiya, 1990, t. 9, № 1, s. 71-82. @@[Zamyatnin A.A. Specialized database EROP-Moscow for properties of natural regulatory oligopeptides. Neirokhikia, 1990, vol. 9, no. 1, pp. 71-82. (In Russ.)]
31. Zamyatnin, A.A. EROP-Moscow: specialized data bank for endogenous regulatory oligopeptides. Protein Seq. Data Anal, 1991, vol. 4, no. 1, pp. 49-52.
32. Zamyatnin A.A. Klassifikaciya endogennyh regulyatornyh oligopeptidov po pervichnoy trukture. Dokl. AN SSSR, 1990, t. 311, № 5, s. 1259-1265. @@[Zamyatnin A.A. Structural classification of endogenous regulatory oligopeptides. Doklady Akademii Nauk SSSR, 1990, vol. 311, no. 5, pp. 1259-1265. (In Russ.)]
33. Zamyatnin, A.A. Structural classification of endogenous regulatory oligopeptides. Protein Seq. Data Anal, 1991, vol. 4, no. 1, pp. 53-56.
34. Zamyatnin A.A., Borchikov A.S., Vladimirov M.G., Voronina O.L. Klient-servernaya baza dannyh EROP-Moscow o prirodnyh oligopeptidah s Internet-dostupom. Neyrohimiya, 2005, t. 22, № 1, s. 17-32. @@[Zamyatnin A.A., Borchikov A.S., Vladimirov M.G., Voronina O.L. Client-server database EROP-Moscow for endogenous oligopeptides with Internet access. Neirokhimia, 2005, no. 22, no. 1, pp. 17-32. (In Russ.)]
35. Zamyatnin A.A., Borchikov A.S., Vladimirov M.G., Voronina O.L. The EROP-Moscow oligopeptide database. Nucleic Acids Res., 2006, vol. 34, Database Issue, pp. D261-D266. DOI:https://doi.org/10.1093/nar/gkj008.
36. Nielsen-Marsh C.M., Ostrom P.H., Gandhi H., Shapiro B., Cooper A., Hauschka P.V., Collins M.J. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka. Geology, 2002, vol. 30, no. 12, pp. 1099-1102. DOI:https://doi.org/10.1130/0091-7613(2002)030<1099:SPOOPA>2.0.CO;2.
37. Egorov N.S., Silaev A.B., Katruha G.S., Orlova T.A. Antibiotiki-polipeptidy. M.: MGU, 1987, 264 s. @@[Egorov N.S., Silaev A.B., Katrukha G.S., Orlova T.A. Antibiotics-polypeptides. M.: MGU, 1987, 264 p. (In Russ.)]
38. Skeggs L.T.Jr., Lentz K.E., Kahn J.R., Shmway N.P., Woods K.R. The Amino Acid Sequence of Hypertensin II. J. Exp. Med., vol. 104, no. 2, pp. 193-197, DOI:https://doi.org/10.1084/jem.104.2.193.
39. Tsai B.S., Peach M.J., Khoshla M.C., Bumpus F.M. Synthesis and Evaluation of (Des-Asp1)angiotensin I as a Precursor for (Des-Asp1)angiotensin II ("Angiotensin III"). J. Med. Chem., 1975, vol. 18, no. 12, pp. 1180-1183, DOI:https://doi.org/10.1021/jm00246a002.
40. Ashmarin I.P., Obuhova M.F. Soderzhanie regulyatornyh peptidov v kore golovnogo mozga i ih central'naya aktivnost'. Zhurn. Byssh. Nervn. Deyat., 1985, t. 35, № 2, s. 211-221. @@[Ashmarin I.P., Obukhova M.F. Concentration of regulatory peptides in the cerebral cortex and their central activity. Biokhimia, vol. 35, no. 2, pp. 211-221. (In Russ.)].
41. Kizer J.S., Busby W.H. Jr, Cottle C., Youngblood W.W. Glycine-directed peptide amidation: Presence in rat brain of two enzymes that convert p-Glu-His-Pro-Gly-OH Into p-Glu-His-Pro-NH2 (Thyrotropin-Releasing Hormone). Proc. Natl. Acad. Sci. USA, 1984, vol. 81, no. 10, pp. 3228-3232, DOI:https://doi.org/10.1073/pnas.81.10.3228.
42. Bateman R.C., Yougblood W.W., Busby W.H., Kizer J.S. Nonenzymatic peptide alpha-amidation. implications for a novel enzyme mechanism. J. Biol. Chem., 1985, vol. 260, no. 16, pp. 9088-9091.
43. Dimarchi R.D., Tam J.P., Kent S.B.H., Merrifield R.B. Weak acid-catalyzed pyrrolidone carboxylic acid formation from glutamine during solid phase peptide synthesis. Minimization by rapid coupling. Int. J. Pept. Prot. Res., 1982, vol. 19, no. 1, pp. 88-93. DOI:https://doi.org/10.1111/j.1399-3011.1982.tb03027.x.
44. Abracham G.A., Podell D.N. Pyroglutamic acid. Non-metabolic formation, function in proteins and peptides, and characteristics of the enzymes effecting its removal. Mol. Cell. Biochem., 1984, vol. 38, no. 1, pp. 181-190. DOI:https://doi.org/10.1007/BF00235695.
45. Karle I.L. In: The Peptides: Analysis, Synthesis, Biology (Gross, E., and Meienhofer, J., eds), Acad. Press, N. Y., pp. 1-54.
46. Schulz C.P. Illuminating folding intermediates. Nature Struct. Biol., 2000, vol. 7, no. 1, pp. 7-10. DOI:https://doi.org/10.1038/71197.
47. Camerman A., Mastropaolo D., Karle I., Karle J., Camerman N. Crystal structure of leucine-enkephalin. Nature, 1983, vol. 306, no. 5942, pp. 447-450. DOI:https://doi.org/10.1038/306447a0.
48. Higashijima T., Kobayashi J., Nagai U., Miyazawa T. Nuclear-magnetic-resonance study on met-enkephalin and met-enkephalinamide. Molecular association and conformation. Eur. J. Biochem., 1979, vol. 97, no. 1, pp. 43-57. DOI:https://doi.org/10.1111/j.1432-1033.1979.tb13084.x.
49. Sabesan M.N. Do peptide hormones have the structural features of epinephrine at their active sites'? Fed. Proc., 1980, vol. 39, pp.1946-1946.
50. Sabesan M.N., Harper, E.T. Are aromatic residues essential at the “active sites” of peptide hormones? J. Theor. Boil., 83, no. 3, pp. 457-467. DOI:https://doi.org/10.1016/0022-5193(80)90052-1.
51. Zamyatnin A.A. Amino acid, peptide, and protein volume in solution. Ann. Rev. Biophys. Bioeng., 1984, vol. 13, pp. 145-165. DOI:https://doi.org/10.1146/annurev.bb.13.060184.001045.
52. Zamyatnin A.A. Fiziko-himicheskie osobennosti endogennyh regulyatornyh oligopeptidov. Biofizika, 1990, t. 35, № 4, s. 555-559. @@[Zamyatnin A.A. Physico-chemical features of endogenous regulatory oligopeptides. Biofizika, vol. 35, no 4, pp. 555-559. (In Russ.)]
53. Zamyatnin A.A. Specificity of the amino acid residue content in endogenous regulatory oligopeptides. Protein Seq. Data Anal, 1991, vol. 4, no. 1, pp. 57-60.
54. Zamyatnin A.A., Voronina O.L. Obschie fiziko-himicheskie i fiziologicheskie osobennosti endogennyh antibakterial'nyh oligopeptidov. Uspehi Biol. Himii, 1998, t. 38, s. 165-197. @@[Zamyatnin A.A., Voronina O.L. Common physico-chemical and physiological features of endogenous antibacterial oligopeptides. Uspekhi Biologicheskoi Khimii, 1998, vol. 38, pp. 165-197. (In Russ.)]
55. Zamyatnin A.A. Fiziko-himicheskie i biologicheskie osobennosti endogennyh oligopeptidnyh toksinov. Neyrohimiya, 1996, t. 13, № 4, s. 243-259. @@[Zamyatnin A.A. Physico-chemical and biological features of endogenous oligopeptide toxins. Neirokhimia, 1996, vol. 13, no. 4, pp. 243-259. (In Russ.)]
56. Zamyatnin A.A., Voronina O.L. Obschie himicheskie osobennosti endogennyh neyropeptidov Neyrohimiya, 1997, t. 14, № 3, s. 263-272. @@[Zamyatnin A.A. Common chemical features of endogenous neuropeptides. Neirokhimia, 1997, vol. 14, no 3, pp. 263-272. (In Russ.)]
57. Zamyatnin A.A., Voronina O.L. Obschie fiziko-himicheskie osobennosti endogennyh oligopeptidnyh gormonov - liberiny i statiny. Biofizika, 1998, t. 43, № 6, s. 438-446. @@[Zamyatnin A.A. Common physicochemical features of endogenous oligopeptide hormones: liberins and statins. Biophysics, 1998, vol. 43, no. 3, pp. 413-421. (In Russ.)]
58. Voronina O.L., Zamyatnin A.A. Endogennye oligopeptidy i immunnaya regulyaciya. Neyrohimiya, 2001, t. 18, № 3, s. 163-181. @@[Voronina O.L., Zamyatnin A.A. Endogenous oligopeptides and immune regulation. Neirokhimia, 2001, vol. 18, no. 3, pp. 163-181. (In Russ.)]
59. Ashmarin I.P., Obuhova M.F. Regulyatornye oligopeptidy. Funkcional'no-nepreryvnaya sovokupnost'. Biohimiya, 1986, t. 51, № 4, s. 531-544. @@[Ashmarin I.P., Obukhova M.F. Regulatory oligopeptides. A functional continuum. Biokhimia, 1986, vol. 51, no. 4, pp. 531-544. (In Russ.)]