Moscow, Moscow, Russian Federation
The antioxidant and antiradical activity of natural phytoalexin - resveratrol (RV) was studied in comparison with the antiradical and antioxidant activity of known antioxidants. The preparation possessed rather high values of the rate constant of interaction with peroxyl radicals. Resveratrol was shown to exhibit the properties of a strong inhibitor of free radical oxidation at low concentrations of [RV] £ 10-5M. In concentrations exceeding [RV]³10-5M , the RV exhibited prooxidant properties. A study of the antioxidant activity of RV on the model of mitochondrial “aging” demonstrated the presence of a high antioxidant activity at the drug. RV prevented the activation of LPO in the membranes of rat liver mitochondria at lower concentrations, than the known antioxidants ionol (dibunol) and mexidol. The presence of high antiradical and antioxidant activity in resveratrol probably could indicate the presence of anti-stress properties in the drug. Verification for these properties was carried out using the molecular genetic model of E. coli . Testing of various doses and combinations of RV with biologically active compounds such as a NO donor - TNIC-thio, thiourea (TU) and mexidol showed that the combined treatment of E. coli cells with RV / TU and a NO donor - TNIC-thio is almost 4-6 times enhanced the expression of the SOS and SoxRS genes of DNA of repair systems of defense. The study of the adaptogenic properties of the drug on models of acute alcohol poisoning (AAP) and acute hypobaric hypoxia (AHH) for rats, as well as water deficit (WD) for pea seedlings confirmed the presence of these properties. The introduction of 10-9 M RV to animals 45 minutes before AAP or AHH prevented the activation of LPO. In addition, the treatment of pea seeds 3×10-5M RV prevented the activation of LPO in the membranes of pea seedlings mitochondria in conditions of water deficiency. Based on the data obtained, it can be assumed that the adaptogenic properties of resveratrol are probably due to its antioxidant and anti-radical activity.
resveratrol, antioxidants, chemiluminescence, stress, lipid peroxidation, gene expression, mitochondria, E. coli
1. Skulachev V.P. Novye svedeniya o biohimicheskom mehanizme zaprogrammirovannogo stareniya organizma i antioksidagtnoy zaschity mitohondriy. Biohimiya, 2009, t. 74 (12), s. 1718-1721. @2[Skulachev V.P. New information about the biochemical mechanism of programmed aging of the body and antioxidant protection of mitochondria. Biokhimiya, 2009, vol. 74 (12), pp. 1718-1721. (In Russ.)]
2. Brand M.D., Affourtit C., Esteves T.C., Green K., Lambert A.J., Miwa S., Pakay J.L., Parker N. Mitochondrial superoxide: production, biological effects, activation of uncoupling proteins. Free Radic Biol Med., 2004, vol. 37, pp. 755-767.
3. Taylor N.L., Heazlewood J.L., Day D.A., Millar A.H. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics, 2005, vol. 4, pp. 1122-1133.
4. Gladden J.D., Ahmed M.I., Litovsky S.H., et al. Oxidative stress and myocardial remodeling in chronic mitral regurgitation. Am. J. Med. Sci., 2011, vol. 342, pp. 114-119.
5. Pandey K.B., Rizvi S.I. Anti-oxidative action of resveratrol: Implications for human health. King Saud University Arabian Journal of Chemistry, 2011, vol.4, pp. 293-298.
6. Karomatov I.D., Shodieva M.S. Biologicheski aktivnoe veschestvo rastitel'nogo proishozhdeniya resveratrol-lechebnye svoystva. Biologiya i integrativnaya medicina, 2018, № 3, s. 178-198. @@[Karomatov I.D., Shodieva M.S. Biologically active substance of plant origin resveratrol-medicinal properties. Biologiya i integrativnaya meditsina, 2018, no. 3, pp. 178-198. (In Russ.)]
7. Stojanović S, Sprinz H., Brede O. Efficiency and Mechanism of the Antioxidant Action of trans-Resveratrol and Its Analogues in the Radical Liposome Oxidation. Archives of Biochemistry and Biophysics, vol. 391 (1), pp. 79-89.
8. Dani C, Bonatto D, Salvador M, Pereira M.D., Henriques J.A., et al. Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. J Agric Food Chem, 2008, vol. 56, pp. 4268-4272.
9. Sun, A.Y.; Wang, Q.; Simonyi, A.; Sun, G.Y. Botanical phenolics and brain heals. Neuromol. Med., 2008, vol. 10, pp. 259-274.
10. Gedik E., Girgin S, Ozturk H.et al. World J. Resveratrol attenuates oxidative stress and histological alterations induced by liver ischemia/reperfusion in rats. Gastroenterol, 2008, vol. 14 (46), pp. 7101-1706.
11. Carrizzo A., Forte M., Damato A. et al. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food and Chemical Toxicology, 2013, vol. 61, pp. 215-226.
12. Amie J. Dirks Naylor. Cellular effects of resveratrol in skeletal muscle. Life Sciences, 2009, vol. 84, pp. 637-640.
13. Ungvari Z., Orosz Z., Rivera A.et al. Resveratrol increases vascular oxidative stress resistance. AJP Heart and Circulatory Physiology, 2007, vol. 292(5), pp. H2417-2424.
14. de Oliveira M.R., Nabavi S.F, Manayi A.et al. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochimica et Biophysica Acta, 2016, vol. 1860, pp. 727-745.
15. de la Lastra C A , Villegas I. Resveratrol as an Antioxidant and Pro-Oxidant Agent: Mechanisms and Clinical Implications. Biochem Soc Trans, 2007, vol. 35 (5), pp. 1156-1160.
16. Athar M., Back J.Ho, Kopelovich L. Multiple Molecular Targets of Resveratrol: Anti-carcinogenic Mechanisms. Arch Biochem Biophys, 2009, vol. 486 (2), pp. 95-102.
17. European Convention for the Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes (ETS 123), Strasburg, 1986.
18. Karkischenko N.N, Grachevoy S.V. Rukovodstvo po laboratornym zhivotnym i al'ternativnym modelyam v biomedicinskih issledovaniyah. M: Profil', 2010, 358 s. @@[Karkishchenko N.N., Grachevoy S.V. Guide to laboratory animals and alternative models in biomedical research. M: Profil', 2010, 358 p. (In Russ.)]
19. Nunoshiba T., Wishnok J.S., Tannenbaum S.R., Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages.Proc. Natl Acad. Sci, 1993, vol. 90 (21), pp. 9993-9997.
20. Quillardet P., Huisman O., D'ari R., Hofnung M. The SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc. Natl Acad. Sci, 1982, vol. 79 (19), pp. 5971-5975.
21. Mokhova E.N., Skulachev V.P., Zhigacheva I.V. Activation of external pathway of NADH oxidation in liver mitochondria of cold-adapted rats. Biochimica et Biophysica Acta, 1978, vol. 501(3), pp. 415-423.
22. Popov V.N., Ruge E.K., Starkov A.A. Vliyanie ingibitorov elektronnogo transporta na obrazovanie aktivnyh form kisloroda pri okislenii sukcinata mitohondriyami goroha. Biohimiya, 2003, t. 68 (7), s. 910-916. @@[Popov V.N., Ruge E.K., Starkov A.A.The effect of electron transport inhibitors on the formation of reactive oxygen species during the oxidation of succinate with pea mitochondria. Biokhimiya, 2003, vol. 68 (7), pp. 910-916, DOI:https://doi.org/10.1023/A:1025078815819. (In Russ.)]
23. Fletcher B.I., Dillard C.D., Tappel A.L. Measurement of Fluorescent Lipid Peroxidation Products in Biological Systems and Tissues. Ann Biochem, 1973, vol. 52 (1), pp. 1-9, DOI:https://doi.org/10.1016/0003-2697(73)90327-8,
24. Rusina I.F., Karpuhin O.N., Kasaikina O.T. Hemilyuminiscentnye metody v issledovanii ingibirovannogo okisleniya. Himicheskaya fizika, 2013. t. 32 (8), 49-65. @@[Rusina I.F., Karpukhin O.N., Kasaikina O.T. Chemiluminescent methods in the study of inhibited oxidation. Khimicheskaya fizika, 2013, vol. 32 (8), pp. 49-65, DOI:https://doi.org/10.7868/S0207401X13080098. (In Russ.)]
25. Emanuel' N.M., Gal D. Okislenie etilbenzola (model'naya reakciya). M.: Nauka, 1984, 376 s. [Emanuel N.M., Gal D. Oxidation of ethylbenzene (model reaction). M.: Nauka, 1984, 376 p. (In Russ.)]
26. Belyakov V.A., Vasil'ev R.F., Fedorova G.F. Kinetika oksi hemilyuminiscencii i ee issledovanie dlya analiza antioksidantov. Kinetika i kataliz, 2004, t. 45 (3), s. 355-362. @@[Belyakov V.A., Vasiliev R.F., Fedorova G.F. Kinetics of oxy chemiluminescence and its study for the analysis of antioxidants. Kinetika i kataliz, 2004, vol. 45 (3), pp. 355-362. (In Russ.)]
27. Azatyan N.A., Karpuchina G.V., Belostockaya I.C., Komissarova N.L. The mechanism of inhibition of the oxidation of dihydric. Petrochemicals, 1973, no. 3, pp. 435-440.
28. Kraynik V.V., Zhuravleva L.A., Ushkalova V.N. Modelirovanie processov okisleniya lipidov biomembran. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2008, № 5, s. 31-38. @@[Kraynik V.V., Zhuravleva L.A., Ushkalova V.N. Modeling of lipid oxidation processes of biomembranes. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2008, no. 5, pp. 31-38. (In Russ.)]
29. Klebanov G.I., Lyubickiy O.B., Vasil'eva O.V. i dr. Antioksidantnye svoystva proizvodnyh 3-oksipiridina: meksidola, emoksipina, proksipina. Voprosy medicinskoy himii, 2001, t. 47 (3), s. 288-300. @@[Klebanov G.I., Lyubitsky O.B., Vasilieva O.V.et al. Antioxidant properties of derivatives of 3-hydroxypyridine: mexidol, emoxypine, proxypine. Voprosy meditsinskoy khimii, 2001, vol. 47 (3), pp. 288-300. (In Russ.)]
30. Vasilieva S.V., Lobysheva I. I., Stupakova M.V. et al. Induction of the SOS DNA repair response in Escherichia coli by nitric oxide donating agents. FEBS Lett., 1990, vol. 454, pp. 177-180.
31. Takahashi S, Nakashima Y. Resveratrol and long-term treatment with physiological concentrations of resveratrol promotes NO production in vascular endothelial cells. Br. J. Nutrit., 2011, vol. 104, pp. 1-7.
32. Kelner M.J., Bagnell R., Welch K.J. Thioureas react with superoxide radicals to yield a sulfhydryl compound. Explanation for protective effect against paraquat. J. Biol. Chem., 1990, vol. 265(3), pp. 1306-1311.
33. Takahashi S, Nakashima Y. Resveratrol and long-term treatment with physiological concentrations of resveratrol promotes NO production in vascular endothelial cells. Br. J. Nutrit, 2011, vol. 104, pp. 1-7.
34. Koster K.L., Reisdorph N., Ramsau J.L. Changing Desiccation Tolerance of Pea Embryo Protoplasts during Germination. J. Exp. Bot., 2003, vol. 54, pp. 1607-1614.
35. Nabi R. B. S., Tayade R., Hussain A. et al. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany, 2019, vol. 161, pp. 120-133.