MECHANISMS OF THE REGULATION OF CA2+-DEPENDENT POTASSIUM PERMEABILITY OF THE ERYTHROCYTE MEMBRANE IN METABOLIC SYNDROME
Abstract and keywords
Abstract (English):
Metabolic syndrome (MS) is a complex of metabolic, hormonal and hemodynamic disorders. MS contributes to the change in the structural and functional status of red blood cells and the dysregulation of their cation-transport function, in which Gardos channels - Ca2+-dependent potassium channels (KСа channels) play an important role. The MS was performed on Wistar male rats (23 animals), which were separated into the control and experimental groups. Rats from the control group were on a standard rat chow. The rats from the experimental group had for 12 weeks a high-fat, high-carbohydrate diet. The amplitude of the hyperpolarization response (HR) of erythrocytes was evaluated by the potentiometric method. It was shown that the amplitude of the HR of rat erythrocytes with MS changed depending on the acting agent: after stimulated with calcium ionophore A23187 - decreased, after the electron donor system was applied - increased compared to the amplitude of HR rats of the control group. It was found that in the isoosmotic incubation medium there was a decrease in the optical density of the erythrocyte suspension obtained from animals fed a high-fat, high-carbohydrate diet, but an increase in the optical density was observed when the rat erythrocyte suspension with MS was placed in a hyperosmotic medium. These data indicate that changes in the Ca2+ - dependent potassium permeability of the red blood cell membrane and erythrocyte volume in animals fed a high-fat, high-carbohydrate diet are associated with structural and physicochemical changes of the erythrocyte membrane.

Keywords:
erythrocytes, КСа channels, metabolic syndrome
Text
Publication text (PDF): Read Download
References

1. Butrova S.A. Metabolicheskiy sindrom: patogenez, klinika, diagnostika, podhody k lecheniyu. RMZh, 2001, № 2, s. 56-60. @@[Butrova S.A. Metabolic syndrome: pathogenesis, clinical features, diagnosis, treatment approaches. RMJ, 2001, no. 2, pp. 56-60. (In Russ.)]

2. Saklayen M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep., 2018, vol. 20, no. 2, p. 12, DOI:https://doi.org/10.1007/s11906-018-0812-z.

3. Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., Citil C., Catak Z. Today's and yesterday's of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition, 2014, vol. 30, no. 1, pp. 1-9, DOI:https://doi.org/10.1016/j.nut.2013.05.013.

4. Chawla A., Chawla R., Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab., 2016, vol. 20, no. 4, pp. 546-551, DOI:https://doi.org/10.4103/2230-8210.183480.

5. Gyawali P., Richards R.S., Bwititi P.T., Nwose E.U. Association of abnormal erythrocyte morphology with oxidative stress and inflammation in metabolic syndrome. Blood Cells Mol. Dis., 2015, vol. 54, no. 4, pp. 360-363. DOI:https://doi.org/10.1016/j.bcmd.2015.01.005.

6. Lang P.A., Kaiser S., Myssina S., Wieder T., Lang F., Huber S. M. Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am. J. Physiol. Cell Physiol., 2003, vol. 285, no. 6, pp. C1553-S1560. DOI:https://doi.org/10.1152/ajpcell. 00186.2003.

7. Huisjes R., Bogdanova A., van Solinge W.W., Schiffelers R.M., Kaestner L., van Wijk R. Squeezing for Life - Properties of Red Blood Cell Deformability. Front Physiol., 2018, no. 9, p. 656. DOI: 3389/fphys.2018.00656.

8. Bogdanova A., Berenbrink M., Nikinmaa M. Oxygen-dependent ion transport in erythrocytes. Acta Physiol. (Oxf.), 2009, vol. 195, no. 3, pp. 305-319, DOI:https://doi.org/10.1111/j.1748-1716.2008.01934.x.

9. Kennett E.C., Kuchel P.W. Redox Reactions and Electron Transfer Across the Red Cell Membrane. IUBMB Life, 2003, vol. 55, no. 7, rp. 375-385. DOI:https://doi.org/10.1080/15216540310001592843.

10. Srinivas S.P., Bonanno J.A., Lariviere E., Jans D, Van Driessche W. Measurement of rapid changes in cell volume by forward light scattering. Pflugers Archive: European Journal of Physiology, 2003, vol. 447, no. 1, pp. 97-108. DOI:https://doi.org/10.1007/s00424-003-1145-5.

11. Orlov S.N., Petrova I.V., Pokudin N.I., Baskakov M.B., Medvedev M.A. Ca2+-aktiviruemye kalievye kanaly eritrocitov, issledovannye metodom registracii Sa2+-inducirovannyh izmeneniy membrannogo potenciala. Biol. membrany: Zhurn. membr. i klet. biol., 1992, № 9 (9), s. 885-903 @@[Orlov S.N., Petrova I.V., Pokudin N.I., Baskakov M.B., Medvedev M.A. Ca2+-activated potassium channels of erythrocytes, studied by the method of recording the Ca2+-induced changes in the membrane potential. Biochemistry (Moscow) Supplement. Series A: Membrane and Cell Biology, 1992, vol. 9, no. 9, pp. 885-903. (In Russ.)]

12. Mahindrakar Y.S., Suryakar A.N., Ankush R.D., Katkam R.V., Kumbhar K.M. Comparison Between Erythrocyte Hemoglobin and Spectrin Glycosylation and Role of Oxidative Stress in type-2 Diabetes Mellitus. Indian J. Clin. Biochem., 2007, vol. 22, no. 1, pp. 91-94, DOI:https://doi.org/10.1007/BF02912888.

13. Lu Y., Liu J. Erythrocyte membrane proteins and membrane skeleton. Front. Biol. China, 2007, no. 2, pp. 247-255, DOI:https://doi.org/10.1007/s11515-007-0035-1.

14. Birulina Yu.G., Petrova I.V., Rozenbaum Yu.A., Shefer E.A., Smagliy L.V., Nosarev A.V., Gusakova S.V. Izmeneniya ob'ema eritrocitov, oposredovannye serovodorodom: rol' Gardos-kanalov, Na+, K+, 2CL--kotransporta i anionnogo obmennika. Byull. eksp. biol. i med., 2019, t. 167, № 4, s. 497-500. @@[Birulina Y.G., Petrova I.V., Rozenbaum Y.A., Shefer E.A., Smagliy L.V., Nosarev A.V., Gusakova S.V. H2S-Mediated Changes in Erythrocyte Volume: Role of Gardos Channels, Na+, K+,2Cl- Cotransport and Anion Exchanger. Bull. Exp. Biol. Med., 2019, no 7, pp. 508-511 (In Russ.)].

15. Lang F. Mechanisms and significance of cell volume regulation. J. Am. Coll. Nutr., 2007, vol. 26 (5 Suppl.), pp. 613S-623S, DOI:https://doi.org/10.1080/07315724.2007.10719667.


Login or Create
* Forgot password?