ON THE PROBLEM OF LOW CONCENTRATIONS ON BIOLOGICAL ACTIVITY
Abstract and keywords
Abstract (English):
The paper presents a brief history and analysis of this problem, which has long been ambiguously accepted by the scientific community and to which Russian researchers have made a significant contribution. Undoubtedly, this theme is associated with research in the field of low doses of ionizing radiation and weak non-ionizing electromagnetic fields, as well as with the results of homeopathic practice in medicine, which has more than 200 years and does not have any theoretical grounds up to now. Since the late 1970s, various authors have shown on different biological models that the biological effect reappears when the concentration of the active substance decreases from the commonly used concentration. However, it may be more intense or even have an opposite sign of response. Thus, the dependence of the biological response to a decreasing concentration of the active substance is non-monotonous and can be characterized by several extremes. Studies of physical and chemical characteristics of concentration dependences in the field of low and ultralow concentrations carried out in our country and abroad, convincingly show occurrence of similar patterns. We have shown for the first time a high correlation between the physical characteristics of highly diluted solutions and the biological response of single-cell organisms, which was confirmed by other researchers. It has been established that the non-classical behavior of diluted aqueous solutions is associated with the formation of mesoparticles about one hundred nanometers in size. In many cases, the formation of mesoparticles is not observed when holding samples of aqueous solutions in the conditions of a weakened magnetic field of the Earth. The observed effects go beyond the classical concepts of solutions. The paper formulates questions that require experimental and theoretical solutions.

Keywords:
diluted aqueous solutions, microheterogeneity, self-organization, mesoparticles, diluted aqueous solutions, microheterogeneity, self-organization, mesoparticles
Text
Publication text (PDF): Read Download
References

1. Southam C.M., Ehrlich J. Effects of extracts of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology, 1943, vol. 33, pp. 517-524.

2. Kuzin A.M. Stimuliruyuschee deystvie ioniziruyuschego izlucheniya na biologicheskie processy. M.: Atomizdat, 1977, 133 s.

3. Eydus L.H. Membrannyy mehanizm biologicheskogo deystviya malyh doz. M.: ITEF RAN, 2001, 81 s.

4. Chizhevskiy A.L. Zemnoe eho solnechnyh bur'. Izd. 2-e. M.: «Mysl'», 1976, 367 s.

5. Perchihin Yu.A., Shangin-Berezovskiy G.N., Rappoport I.A. Izmenenie aktivnosti aminotransferaz pri vozdeystvii N-nitrozo N-dietilmochevinoy na syvorotku krovi. Himicheskiy mutagenez i sozdanie sortov intensivnogo tipa. M.: Nauka, 1977, s. 263.

6. Shangin-Berezovskiy G.N., Perchihin Yu.A., Kolbasin A.A. Vliyanie malyh doz N-nitrozo N-dietilmocheviny na tolerantnost' perepelov k toksichnomu deystviyu nekotoryh mutagenov. Effektivnost' himicheskih mutagenov v selekcii. In-t himfiziki AN SSSR, 1980.

7. Shangin-Berezovskiy G.N., Adamov V.Ya., Ryhleckaya O.S., Moloskin S.A. Sistemnyy harakter stimuliruyuschego deystviya ul'tramalyh doz supermutagenov. Uluchshenie kul'turnyh rasteniy i mutagenez. In-t himfiziki AN SSSR, 1982.

8. Yamskova V.P., Modyanova E.A., Reznikova M.M., Malenkov A.G. Vysokoaktivnye tkanevospecificheskie adgezivnye faktory pecheni i legkogo. Mol. Biol., 1977, t. 11, № 5.

9. Yamskova V.P., Modyanova E.A., Levental' V.I., Lankovskaya T. P., Bocharova O.K., Malenkov A.G. Tkanevospecificheskie makromolekulyarnye faktory iz pecheni i legkogo: ochistka i deystvie na mehanicheskuyu prochnost' tkani i kletok. Biofizika, 1977, t. 22.

10. Effekty sverhmalyh doz biologicheski aktivnyh veschestv. Ross. Him. Zhurn., 1999, t. XLIII, № 5.

11. Burlakova E.B. Osobennosti deystviya sverhmalyh doz biologicheski aktivnyh veschestv i fizicheskih faktorov nizkoy intensivnosti. Ross. Him. Zhurn., 1999, t. XLIII, №5, s. 3-11.

12. Brown S.L., Van Epps D.E. Suppression of T lymphocyte chemotactic factor production by the opioid peptides beta-endorphin and met-enkephalin. J. Immunol., 1985, vol. 134, no. 5, p. 3384-3390.

13. Zaitsev S.V., Sazanov L.A., Koshkin A.A., Sud’ina G.F., Varfolomeev S.D. Respiratory birst inhibition in human neutrophils by ultra-low doses of [D-Ala2] methionine. FEBS Letters, 1991, vol. 291, p. 84-86. DOI:https://doi.org/10.1016/0014-5793(91)81109-L.

14. Xibo Yan, Delgado M., Aubry J., Gribelin O., Stocco A., Da Cruz F.B., Bernard J., Ganachaud F. Central Role of Bicarbonate Anions in Charging Water/Hydrophobic Interfaces. J. Phys. Chem. Lett., 2018, vol. 9, pp. 96-103. DOI:https://doi.org/10.1021/acs.jpclett.7b02993.

15. Lippincott et al. Polywater. Science, 1969, vol. 164, pp. 1482-1487. DOI:https://doi.org/10.1126/science.164.3887.1482.

16. Lobyshev V.I., Kalinichenko L.P. Izotopnye effekty D2O v biologicheskih sistemah. M.: Nauka, 1978, 215 s.

17. Lobyshev V.I. O chem govoryat izotopnye effekty tyazheloy vody v biologicheskih i model'nyh sistemah. Aktual'nye voprosy biologicheskoy fiziki i himii, 2018, t. 3, № 3, s. 511-519.

18. Tikhonov V.I., Volkov A.A. Separation of water into its ortho and para isomers. Science, 2002, vol. 216, p. 2363.

19. Pershin S.M. Coincidence of Rotational Energy of H2O Ortho - Para Molecules and Translational Energy near Specific Temperatures in Water and Ice. Phys. Wave Phenom., 2008, vol. 16, no. 1, pp. 15-25.

20. Didenko Y.T., Suslick K.S. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Letters to Nature, 2002, vol. 418, pp. 394-397. DOI:https://doi.org/10.1038/nature00895.

21. Chernikov A.V., Bruskov V.I., Heat-induced Generation of Hydroxyl Radicals and other Redox-active Species in Seawater. Biophysics, 2002, vol. 47, no. 5, pp. 773-781.

22. Chernikov A.V., Bruskov V.I., Fixation of atmospheric nitrogen in the water by heat or light with the formation of nitrogen oxides. Doklady Biochemistry and Biophysics, 2005, vol. 400, no. 1-6, p. 40-43.

23. Gudkov S.V., Bruskov V.I., Astashev M.E., Chernikov A.V., Yaguzhinsky L.S., Zakharov S.D. Oxygen-dependent Auto-oscillations of Water Luminescence Triggered by the 1264 nm Radiation. J. Phys. Chem. B, 2011, vol. 115, p. 7693-7698.

24. Gudkov S.V., Karp O.E., Garmash S.A., Ivanov V.E., Chernikov A.V., Bruskov V.I., Monokhin A.A., Astashev M.E., Yaguzhinsky L.S. Generation of reactive oxygen species in water under exposure to visible or infrared irradiation at absorption bands of molecular oxygen. Biophysics, 2012, vol. 57, no. 1, pp. 1-8.

25. Ignatiev A.N., Pryakhin A.N., Lunin V.V. Numerical simulation of the kinetics of ozone decomposition in an aqueous solution. Russian Chem. Bull., 2008, vol. 57, no. 6, pp. 1172-1178.

26. Binhi V.N., Sarimov R.M., Relaxation of liquid water states with altered stoichiometry. Biophysics, 2014, vol. 59, no. 4, pp. 515-519.

27. Belovolova L.V., Glushkov M.V., Vinogradov E.A., Influence of dissolved gases on highly diluted aqueous media. Biophysics, 2014, vol. 59, no. 4, pp. 524-530.

28. Voeykov V.L., Vilenskaya N.D., Ha Do Min', Malyshenko S.I., Buravleva E.V., Yablonskaya O.I., Timofeev K.N. Ustoychivoe neravnovesnoe sostoyanie bikarbonatnyh vodnyh sistem. ZhFH, 2012, t. 86, № 9, s. 1518-1527.

29. Domrachev G.A., Rodygin Yu.L., Selivanovskiy D.A. Mehanohimicheski aktivirovannoe razlozhenie vody v zhidkoy faze. DAN, 1993, t. 329, № 2, s.186-188.

30. Domrachev G.A., Rodygin Yu.L., Selivanovskiy D.A., Stunzhas P.A. Ob odnom iz mehanizmov generacii peroksida vodoroda v okeane. V kn. Himiya morey i okeanov. M.: Nauka, 1995, s.169-177. [

31. Veselov Yu.S. Effekt nakopleniya perekisi vodoroda pri obratno-osmoticheskom opresnenii morskoy vody. Himiya i tehnologiya vody, 1991, t. 13, № 8, s. 741-745.

32. Styrkas A.D., N.G. Nikishina N.G. Chemical processes in moving water. Russian Journal of Inorg. Chem., 2009, vol. 54, no. 6, pp. 961-968.

33. Styrkas A.D. Composition of gaseous products produced upon oscillations of water. Russian Journal of Inorg. Chem., 2011, vol. 56, no. 7, p. 1029-1031.

34. Lee J.K., Walker K.L., Han H.S., Kang J., Prinz F.B., Waymouth R.M., Nam H.G., Zare R.N. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. PNAS, 2019, vol. 116, no. 39, pp. 19294-19298. DOI:https://doi.org/10.1073/pnas.1911883116.

35. Bunkin N.F., Indukaev K.V., Ignat'ev P.S. Spontannaya samoorganizaciya gazovyh mikropuzyr'kov v zhidkostyah. ZhETF, 2007, t. 131, № 3, s. 539-555.

36. Bunkin N.F., Suyazov N.V., Shkirkin A.V., Ignat'ev P.S., Indukaev K.V. Klasternaya struktura stabil'nyh nanopuzyrey rastvorennogo gaza v gluboko ochischennoy vode. ZhETF, 2009, t. 135, № 5, s. 917-937.

37. Bunkin N.F., Shkirin A.V., Babenko V.A., Sychev A.A., Lomkova A.K., Kulikov E.S. Laser Diagnostics of the Bubston Phase in the Bulk of Aqueous Salt Solutions. Physics of Wave Phenomena, 2015, vol. 23, no. 3, pp. 161-175.

38. Chaplin M. Water structure and science. www.lsbu.ac.uk/water

39. Lobyshev V.I., A.B. Solovey A.B., Bulienkov N.A. Computer Modular Design of Parametric Structures of Water. Biophysics, 2003, vol. 48, no. 6, pp. 1011-1021.

40. Lobyshev V.I., Solovey A.B., Bulienkov N.A. Computer construction of modular structures of water. J. Mol. Liquids, 2003, vol. 106, no. 2-3, pp. 277-297.

41. Nilsson A., Petterson L.G.M., The structural origin of anomalous properties of liquid water. Nature Communication, 2015, pp. 1-11. DOI:https://doi.org/10.1038/ncomms9998.

42. Lobyshev V.I., Ryzhikov B.D., Shikhlinskaya R.E., Mazurova T.N. Intrinsic Luminescence of Water and Heavily Diluted Solutions of Dipeptides. Biophysics, 1994, vol. 39, no. 4, pp. 557-563.

43. Lobyshev V.I., Shikhlinskaya R.E., Ryzhikov B.D. Experimental evidence for intrinsic luminescence of water, J.Mol. Liquids, 1999, vol. 82, no. 1-2, pp.73-81.

44. Lobyshev V.I., Long scale evolution of luminescent properties of water and glycyltryptophan solutions, influence of UV irradiation, In: Optical Diagnostics of Biological Fluids IV, Ed.: A.V.Priezzev, Toshimitsu Asakura. Proc. of SPIE, 1999, vol. 3599, pp. 52-57.

45. Vuks M.F. Rasseyanie sveta v gazah, zhidkostyah i rastvorah. Izd. LGU,1977, 320 s.

46. Bulavin L.A., Gotsul´skii V.Y., Malomuzh N.P., Chechko V.E., Relaxation and Equilibrium Properties of Dilute Aqueous Solutions of Alcohols. Russ. Chem. Bull., 2016, vol. 65, no. 4, pp. 851-876.

47. Lobyshev V.I., Tomkevitch M.S., Luminescence Study of Homeopathic Remedies, In: Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, Ed: A.V. Priezzhev, G.L. Cote. Proc. of SPIE, 2001, vol. 4263, pp. 59-64.

48. Lobyshev V.I., Tomkevich M.S., Petrushanko I.Yu., Experimental Study of Potentiated Aqueous Solutions. Biophysics, vol. 50, no. 3, pp. 416-420.

49. Pershin S.M., Bunkin A.F., Grishin M.Ya., Davydov M.A., Lednev V.N., Palmina N.P., A.N. Fedorov A.N. Correlation of Optical Activity and Light Scattering in Ultra-Low-Concentrated Phenosan-Potassium Aqueous Solutions. Dokl. Phys., 2015, vol. 60, pp. 114-117.

50. Pershin S.M., Bunkin A.F., Grishin M.Ya., Lednev V.N., Fedorov A.N., Palmina N.P. Bimodal Dependence of Light Scattering/Fluctuations on the Concentration of Aqueous Solutions. Phys. Wave Phenom., 2016, vol. 24, no. 1, pp. 41-47.

51. Elia V., Niccoli M., New Physico-Chemical Properties of Extremely Diluted Aqueous Solutions. J. of Thermal Analysis and Calorimetry, 2004, vol. 75, pp. 815-836.

52. Elia V., Ausanio G., Gentile F., Germano R., Napoli E., Niccoli M. Experimental Evidence of Stable water Nanostructures in Extremely Dilute Solutions at Standard Pressure and Temperature. Homeopathy, 2014, vol. 103, no. 1, pp. 44-50.

53. Rey L., Thermoluminescence of Ultra-high Dilutions of Lithium Chloride and Sodium Chloride. Physica A, 2003, vol. 323, pp. 67-74.

54. Lobyshev V.I. Dielectric Characteristics of Highly Diluted Aqueous Diclofenac Solutions in the Frequency Range of 20Hz to 10MHz. Physics of Wave Phenomena, 2019, vol. 27, no. 2, pp. 119-127.

55. Ryzhkina I.S., Murtazina L.I., Kiseleva Y.V., Konovalov A.I., Properties of Supramolecular Nanoassociates Formed in Aqueous Solutions of Biologically Active Compounds in Low or Ultra-low Concentrations. Doklady Phys. Chem., 2009. vol. 428, no. 2, pp. 196-200.

56. Konovalov A.I., Ryzhkina I.S., Murtazina L.I., Kiseleva Y.V., Forming the Nanosized Molecular Assemblies (Nanoassociates) is a Key to Understand the Properties of Highly Diluted Aqueous Solutions. Biophysics, 2014, vol. 59, no. 3, pp. 341-346.

57. Ryzhkina I.S., Murtazina L.I., Kiseleva Y.V., Konovalov A.I., Self-organization and Physicochemical Properties of Aqueous Solutions of the Antibodies to Interferon Gamma at Ultrahigh Dilution. Doklady Phys. Chem., 2015, vol. 462, no. 1, pp. 110-114.

58. Konovalov A., Ryzhkina I., Maltzeva E., Murtazina L., Kiseleva Yu., Kasparov V., Palmina N. Nanoassociate Formation in Highly Diluted Water Solutions of Potassium Phenosan with and without Permaloy Shielding. Electromagn. Biol. Med., 2015, vol. 34, no 2, pp. 141-146.

59. Preparata G. QED Coherence in Matter. World Scientific, Singapore, New Jersey, London, Hong Kong, 1995.

60. Arani R., Bono I., Del-Guidice E., Preparata G. QED Coherence and the Thermodynamics of Water. Int. J. Mod. Phys. B., 1995, vol. 9, pp. 1813.

61. Del-Guidice E., Vitiello G. Role of the Electromagnetic Field in the Formation of Domains in the Process of Symmetry-Braking Phase Transition. Phys. Rev. A., 2006, vol. 74, p. 022105.

62. Vitiello G, On the Isomorphism between Dissipative Systems, Fractal Self-Similarity and Electrodynamics. Toward an Integrated Vision of Nature Systems. Systems, 2014, vol. 2, p. 203. DOI:https://doi.org/10.3390/systems, 2020203.

63. Yinnon T., Liu Z.Q. Domains Formation Mediated by Electromagnetic Fields in Very Dilute Aqueous Solutions: 1. Quantum Electrodynamic Aspects. Water, 2015, vol. 7, p. 33. DOI:https://doi.org/10.14294/WATER.2015.4.


Login or Create
* Forgot password?