SKELETAL MUSCLES OF MARINE FISH AND MOLECULAR OXYGEN UTILIZATION SYSTEMS (BRIEF OVERVIEW)
Abstract and keywords
Abstract (English):
The information on the characteristics of the cellular composition and molecular oxygen utilization systems in skeletal muscles of bony fish is summarized. Their state under conditions of normoxia and hypoxia is considered. It has been noted that white muscle fibers possess an uncompensated type of organization of the respiratory chain of mitochondria with a pronounced predominance in the content of cytochromes of the aa3 group. At the same time, muscle tissue has effective enzymatic systems that can neutralize toxic lactate formed during acute hypoxia and anoxia, converting it to ethanol, alanine, CO2 , glucose and lipids. It has been shown that the functioning of the Krebs cycle under conditions of anaerobiosis provides additional ATP resynthesis based on carbohydrate and protein substrates, with a highly active malik-enzyme as the key element. It is concluded that the skeletal muscles and a number of other tissues in fish have been initially oriented towards functioning under conditions of acute oxygen deficiency, and for these organisms hypoxic conditions seem to be normal and not extraordinary ones.

Keywords:
skeletal muscles, marine fish, metabolism, the respiratory chain of mitochondria, hypoxia
Text
Publication text (PDF): Read Download
References

1. Nilsson G.E., Renshaw G.M.C. Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J. Exp. Biol., 2004, vol. 207, pp. 3131-3139. 04.

2. Joyce S. The dead zones: oxygen-starved coastal waters. Environ. Health Persp., 2000, vol. 108, no. 3, pp. A120-A125.

3. El Albani A., Bengtson S., Canfield D.E., Bekker A., Macchiarelli R., Mazurier A., Meunier A. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature, 2010, vol. 466, no. 7302, pp. 100-104.

4. Danovaro R., Dell'Anno A., Pusceddu A., Gambi C., Heiner I., Kristensen R.M. The first metazoa living in permanently anoxic conditions. BMC Biol., 2010, vol. 8, no. 1, p. 30.

5. Soldatov A.A., Andreenko T.I., Sysoeva I.V., Sysoev A.A. Tissue specificity of metabolism in the bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia. J. Evolutionary Biochem. Physiol., 2009, vol. 45, no. 3, pp. 349-355.

6. Soldatov A.A., Andreeva A.Yu., Novitskaya V.N., Parfenova I.A. Coupling of membrane and metabolic function in nucleated erythrocytes of Scorpaena porcus L. under hypoxia in vivo and in vitro. J. Evolutionary Biochem. Physiol., 2014, vol. 50, no. 5, pp. 409-415.

7. Savina M.V. Mehanizmy adaptacii tkanevogo dyhaniya v evolyucii pozvonochnyh. S.-Peterburg: Nauka, 1992, 200 s.

8. Soldatov A.A. Cytochrome System and Oxygen Tension in Muscle Tissue of Salt-Water Fish with Different Natural Activity. J. Evolutionary Biochem. Physiol., 1996, vol. 32, no. 2, pp. 112-115.

9. Soldatov A.A., Parfenova I.A. Stehiometriya citohromov i napryazhenie kisloroda v skeletnyh myshcah morskih ryb. Ukr. bioh. zhurn., 2014, t. 96, № 2, s. 60-67.

10. Hughes G.M., Johnston I.A. Some responses of the electric ray (Torpedo marmorata) to low ambient oxygen tensions. J. Exp. Biol., 1978, vol. 73, pp. 107-117.

11. Waarde A. Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production. Comp. Biochem. Physiol., 1988, vol. 91 B, no. 2, pp. 207-228.

12. Waarde A., Thillart G., Kesbeke F. Anaerobic energy metabolism of the European eel, Anguilla anguilla L. J. Comp. Physiol., 1983, vol. 149 B, no. 4, pp. 469-475.

13. Strayer L. Biohimiya. M.: Mir, 1984, t. 1, 232 s.

14. Johnston I.A. Implications of Muscle Growth Patterns for the Colour and Texture of Fish. Farmed fish quality kestin. Osney Mead Oxford: Blackwell Science Ltd, 2001, pp. 13-30.

15. Love R.M. The chemical biology of fish. London: Academic Press, 1980, vol. 2, 943 p.

16. Drummond G. Muscle metabolism. Fortschritte der Zoollogie, 1967, vol. 18, pp. 359-429.

17. Wittenberger C. Metabolic interaction between isolated white and red carp muscle. Rev. Roum. Biol. Ser. Zool., 1973, vol. 18, pp. 71-76.

18. Soldatov A.A., Parfenova I.A. Napryazhenie kisloroda v krovi, skeletnyh myshcah i osobennosti tkanevogo metabolizma kefali-singilya v usloviyah eksperimental'noy gipotermii. Probl. kriobiologii, 2009, t. 19, № 3, s. 290-300.

19. Soldatov A.A. Napryazhenie kisloroda v krovi, skeletnyh myshcah i osobennosti tkanevogo metabolizma u kefali-singilya (Liza aurata Risso, 1810) v usloviyah ostroy eksperimental'noy gipoksii. Aktual'nye voprosy biologicheskoy fiziki i himii. 2018, t. 3, № 4, s. 724-729.

20. Knoerr S., Bohl M., Braunbeck T. Development of red and white muscle in juvenile Danube salmon (Hucho hucho) under the influence of different water currents - a contribution to optimized conditions for reintroduction into natural habitats. Verh. Ges. Ichthyol., 1998, vol. 1, pp. 109-127.

21. Saenger A.M., Kim Z.S., Adam H. The fine structure of muscle fibres of roach, Rutilus rutilus (L.), and chub, Leuciscus cephalus (L.), Cyprinidae, Teleostei: Interspecific differences and effects of habitat and season. J. Fish Biol., 1990, vol. 36, no. 2, pp. 205-213.

22. Dickson K.A., Johnson N.M., Donley J.M., Hoskinson J.A., Hansen M.W., Tessier J.D. Ontogenetic changes in characteristics required for endothermy in juvenile black skipjack tuna (Euthynnus lineatus). J. Exp. Biol., 2000, vol. 203, no. 20, pp. 3077-3087.

23. Leonard J.B.K. Regional variation in muscle metabolic enzymes in individual American shad (Alosa sapidissima). Can. J. Zool., 1999, vol. 77, no. 8, pp. 1322-1326.

24. Leonard J.B.K., McCormick S.D. Effects of migration distance on whole-body and tissue-specific energy use in American shad (Alosa sapidissima). Can. J. Fish. Aquat. Sci., 1999, vol. 56, no. 7, pp. 1159-1171.

25. Leonard J.B.K., McCormick S.D. The effect of migration distance and timing on metabolic enzyme activity in an anadromous clupeid, the American shad (Alosa sapidissima). Fish. Physiol. Biochem., 1999, vol. 20, no. 2, pp. 163-179.

26. Hemre G.I., Kahrs F. 14C-glucose injection in Atlantic cod, Gadus morhua, metabolic responses and excretion via the gill membrane. Aquacult. Nutr., 1997, vol. 3, no. 1, pp. 3-8.

27. Hyvaerinen H., Holopainen I.J., Piironen J. Anaerobic wintering of crucian carp (Carassius carassius L.). 1. Annual dynamics of glycogen reserves in nature. Comp. Biochem. Physiol., 1985, vol. 82 A, no. 4, pp. 797-803.

28. West T.G., Schulte P.M., Hochachka P.W. Implications of hyperglycemia for post-exercise resynthesis of glycogen in trout skeletal muscle. J. Exp. Biol., 1994, vol. 189, pp. 69-84.

29. Modigh M., Tota B. Mitochondrial respiration in the ventricular myocardium and in the white and deep red myotomal muscles of juvenile tuna fish (Thunnus thynnus L.). Acta Physiol. Scand., 1975, vol. 93, no. 3, pp. 289-294.

30. Jabarsyah A., Tsuchimoto M., Yada O., Kozuru Ya., Miyake T., Misima T., Wang Q., Tachibana K. Comparison of biochemical and physiological characteristics among white, pink, and red muscle fibers in carp (cultured). Fish Sci., 2000, vol. 66, no. 3, pp. 586-593.

31. Yada O., Tsuchimoto M., Wang Q., Apablaza P.A.G., Jabarsyah A., Tachibana K. Differences of muscle fiber type and temporal change of K-value among parts toward depth of dorsal muscle in carp (cultured). Fish Sci., 2000, vol. 66, no. 1, pp. 147-152.

32. Froyland L., Lie O., Berge R. Mitochondrial and peroxisomal β-oxidation capacities in various tissues from Atlantic salmon Salmo salar. Aquacult. Nutr., 2000, vol. 6, no. 2, pp. 85-89.

33. Carpene E., Martin B., Libera L.D. Biochemical differences in lateral muscle of wild and farmed gilthead sea bream (Sparus aurata L.). Fish. Physiol. Biochem., 1998, vol. 19, no. 2, pp. 229-238.

34. De’Oliveira E.G., Urbinati E.C., Souza V.L., Roviero D.P. Glycogen levels in different tissues of pacu (Piaractus mesopotamicus, Holmberg, 1887). Bol. Inst. Pesca-Sao-Paulo, 1997, vol. 24, pp. 89-95.

35. El-Casfi M. Effects of water low salinity on tissular lipids in white and red muscle of Liza aurata. Ichtyophysiol. Acta., 1998, no. 21, pp. 15-25.

36. El-Casfi M., Romdhane M.S., Chanussot F., Cherif A. Variation of the lipid composition of the muscle of mullet Liza aurata living in two sites of different salinity. Proc. Symp. Brest., 19-20, November 1998. Plouzane France Ifremer, 2000, no. 27, pp. 130-139.

37. Kiessling A., Aasgaard T., Storebakken T., Johansson L., Kiessling K.H. Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age. 3. Chemical composition. Aquaculture, 1991, vol. 93, no. 4, pp. 373-387.

38. De’Oliveira E.G., Urbinati E.C., Souza V.L., Roviero D.P. Visceral lipsomatic index (VLSI) and total lipid levels in different body tissues of pacu (Piaractus mesopotamicus, Holmberg, 1887). Bol. Inst. Pesca-Sao-Paulo, 1997, vol. 24, pp. 97-103.

39. George J.C., Stevens E.D. Fine structure and metabolic adaptation of red and white muscles in tuna. Environ. Biol. Fish, 1978, vol. 3, no. 2, pp. 185-191.

40. Driedzic W.R., Hochachka P.W. The unansweres question of high anaerobic capabilities of carp white muscle. Can. J. Zool., 1975, vol. 53, pp. 706-712.

41. Johnston I.A., Davison W., Goldspink G. Energy metabolism of carp swimming muscles. J. Comp. Physiol., 1977, vol. 114, no. 2, pp. 203-216.

42. Martinez M.L., Landry C., Boehm R., Manning S., Cheek A.O., Rees B.B. Effects of long-term hypoxia on enzymes of carbohydrate metabolism in the Gulf killifish, Fundulus grandis. J. Exp. Biol., 2006, vol. 209, no. 19, pp. 3851-3861.

43. Matyuhin V.A., Neshumova T.V., Dement'ev Ya.V. Izmeneniya temperatury krasnyh i belyh myshc baykal'skogo hariusa Thymallus arcticus baicalensis Dyb. pri razlichnyh skorostyah plavaniya. Vopr. ihtiol., 1975, t. 15, № 5, c. 884-889.

44. Coughlin D.J., Rome L.C. Muscle activity in steady swimming scup, Stenotomus chrysops, varies with fiber type and body position. Bull. Mar. Biol. (Lab. Woods Hole), 1999, vol. 196, no 2, pp. 145-152.

45. Kondrat'eva T.P., Astahova L.P. Morfologicheskie i biohimicheskie osobennosti belyh i krasnyh myshc pri razlichnyh fiziologicheskih sostoyaniyah. Tr. Karadagskogo filiala InBYuM NAN Ukrainy, Sevastopol', 1997, c. 111-120.

46. Chance B., Oshino N., Sugano T., Mayevsky A. Basic principles of tissue oxygen determination from mitochondrial signals. Adv. Exp. Med. Biol., 1973, vol. 37, pp. 277-292.

47. Wilson A., Owen Cn., Erecinska M. Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: A mathematical model. Arch. Biochem. Biophys., 1979, vol. 195, no. 2, pp. 494-504.

48. Lubbers D., Kessler M. Oxygen supply and the rate of tissue respiration. Oxygen transport in blood and tissue. Stuttgart: Tieme, 1968, pp. 90-99.

49. Savina M.V., Maslova G.M., Demin V.I., Baklanova S.M. Issledovanie citohromov v somaticheskoy i serdechnoy myshcah minogi Lampetra fluviatilis L. Zh. evolyuc. bioh. fiziol., 1981, t. 17, № 3, c. 246-253.

50. Richardson T., Tappel A.L., Smith L.M., Houle C.R. Polyunsaturated fatty acids in mitochondria. J. Lipid Res., 1962, vol. 3, pp. 344-350.

51. Wodtke E. Temperature adaptation of biological membranes. Compensation of the molar activity of cytochrome C oxidase in the mitochondrial enegy-transducing membrane during thermal acclimation of the carp (Cyprinus carpio L.). Biochim. biophys. acta., 1981, vol. 640, no. 3, pp. 710-720.

52. Soldatov A.A., Parfenova I.A. Citohromnaya sistema i uroven' mioglobina v skeletnyh myshcah kefali-singilya (Liza aurata Risso) v usloviyah eksperimental'noy gipotermii. Trudy IBVV RAN, 2017, № 80 (83), s. 69-75.

53. Wilson M.T., Bonaventura J., Brunory M. Mitochondrial cytochrome content and cytochrome oxidase activity of some amazonian fish. Comp. Biochem Physiol., 1979, vol. 62 A, pp. 245-249.

54. Martinez M., Dutil J.D., Guderley H. Longitudinal and allometric variation in indicators of muscle metabolic capacities in Atlantic cod (Gadus morhua). J. Exp. Zool., 2000, vol. 287, no. 1, pp. 38-45.

55. Rodnick K.J., Williams S.R. Effects of body size on biochemical characteristics of trabecular cardiac muscle and plasma of rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol., 1999, vol. 122 A, no. 4, pp. 407-413.

56. Garenc C., Couture P., Laflamme M., Guderley H. Metabolic correlates of burst swimming capacity of juvenile and adult threespine stickleback (Gasterosteus aculeatus). J. Comp. Physiol., 1999, vol. 169, no. 2, pp. 113-122.

57. Phillips M.C.L., Moyes C.D., Tufts B.L. The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells. J. Exp. Biol., 2000, vol. 203, no. 6, pp. 1039-1045.

58. Soldatov A.A., Savina M.V. Effect of hypoxia on the content and stoichiometry of cytochromes in muscle of the gray mullet Liza aurata. J. Evolutionary Biochem. Physiol., 2008, vol. 44, no. 5, pp. 599-604.

59. Sidell B.D. Turnover of cytochrome c in skeletal muscle of green sunfish (Lepomis cyanellus R.) during thermal acclimation. J. Exp. Zool., 1977, vol. 199, no. 2, pp. 233-250.

60. Blier P.U., Lemieux H. The impact of the thermal sensitivity of cytochrome c oxidase on the respiration rate of Arctic charr red muscle mitochondria. J. Comp. Physiol., 2001, vol. 171, no. 3, pp. 247-253.

61. Wilson F.R., Somero G., Prosser C.L. Temperature-metabolism relations of two species of Sebastes from different thermal environments. Comp. Biochem. Physiol., 1974, vol. 47, no. 2 B, pp. 485-491.

62. Sebert P., Simon B., Barthelemy L. Hydrostatic pressure induces a state resembling histotoxic hypoxia in Anguilla Anguilla. Comp. Biochem. Physiol., 1993, vol. 105 A, no. 2, pp. 255-258.

63. Cohen A., Nugegoda D., Gagnon M.M. Metabolic responses of fish following exposure to two different oil spill remediation techniques. Ecotoxicol. Environ. Saf., 2001, vol. 48, no. 3, pp. 306-310.

64. Reddy S.J., Kalarani V., Tharakanadha B., Reddy D.C., Ramamurthi R. Changes in energy metabolism of the fish, Labeo rohita in relation to prolonged lead exposure and recovery. J. Ecotoxicol. Environ. Monitoring, 1998, vol. 8, no. 1, pp. 43-53.

65. Verzhbinskaya N.A. Citohromnaya sistema mozga v filogeneze pozvonochnyh zhivotnyh. Fiziol. zh. SSSR, 1953, t. 39, no. 1, s. 17-26.

66. Buchner T., Abele D., Poertner H.O. Oxyconformity in the intertidal worm Sipunculus nudus: the mitochondrial background and energetic consequences. Comp. Biochem. Physiol., 2001, vol. 129, no. 1, pp. 109-120.

67. Tschischka K., Abele D., Poertner H.O. Mitochondrial oxyconformity and cold adaptation in the polychaete Nereis pelagica and the bivalve Arctica islandica from the Baltic and White Seas. J. Exp. Biol., 2000, vol. 203, no. 21, pp. 3355-3368.

68. Matschak T.W., Tyler D.D., Stickland N.C. Metabolic enzyme activities in Atlantic salmon (Salmo salar L.) embryos respond more to chronic changes in oxygen availability than to environmental temperature. Fish Physiol. Biochem., 1998, vol. 18, no. 2, pp. 115-123.

69. Bickler P.E., Buck L.T.Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu. Rev. Physiol., 2007, vol. 69, pp. 145-170.

70. Vornanen M., Paajanen V. Seasonality of dihydropyridine receptor binding in the heart of an anoxia-tolerant vertebrate, the crucian carp (Carassius carassius L.). Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, vol. 287, no. 5, pp. R1263-R1269.

71. Hochachka P. Defence strategies against hypoxia and hypothermia. Science, 1986, vol. 231, pp. 324-241.

72. Zhou B.S., Wu R.S., Randall D.J., Lam P.K., Ip Y.K., Chew S.F. Metabolic adjustments in the common carp during prolonged hypoxia. J. Fish Biol., 2000, vol. 57, no. 5, pp. 1160-1171.

73. Chew S.F., Gan J., Ip Y.K. Nitrogen metabolism and excretion in the swamp eel, Monopterus albus, during 6 or 40 days of estivation in mud. Physiol. Biochem. Zool., 2005, vol. 78, no. 4, pp. 620-629.

74. Dorigatti M., Krumschnabel G., Schwarzbaum P.J., Wieser W. Effects of hypoxia on energy metabolism in goldfish hepatocytes. Comp. Biochem. Physiol., 1997, vol. 117 B, no. 1, pp. 151-158.

75. Herbert N.A., Wells R.M. The aerobic physiology of the air-breathing blue gourami, Trichogaster trichopterus, necessitates behavioural regulation of breath-hold limits during hypoxic stress and predatory challenge. J. Comp. Physiol. B., 2001, vol. 171, no. 7, pp. 603-612.

76. Ip Y.K., Kuah S.S., Chew S.F. Strategies adopted by the mudskipper Boleophthalmus boddaerti to survive sulfide exposure in normoxia or hypoxia. Physiol. Biochem. Zool., 2004, vol. 77, no. 5, pp. 824-837.

77. MacCormack T.J., Lewis J.M., Almeida-Val V.M., Val A.L., Driedzic W.R. Carbohydrate management, anaerobic metabolism, and adenosine levels in the armoured catfish, Liposarcus pardalis (castelnau), during hypoxia. J. Exp. Zoolog. A. Comp. Exp. Biol., 2006, vol. 305, no. 4, pp. 363-375.

78. Moraes G., Chippari A.R., Guerra C.D.R., Gomes L.C., Souza R.H.S. Immediate changes on metabolic parameters of the freshwater teleost fish Piaractus mesopotamicus (PACU) under severe hypoxia. Bol. Tec. Cepta., 1997, vol. 10, pp. 45-52.

79. Moraes G., Choudhuri J.V., Souza R.H.S. Metabolic strategies of Hypostomus regani (Cascudo), a freshwater teleost fish under extreme environmental hypoxia. Bol. Tec. Cepta., 1997, vol. 10, pp. 35-44.

80. Pincetich C.A., Viant M.R., Hinton D.E., Tjeerdema R.S. Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR. Comp. Biochem. Physiol. C. Toxicol. Pharmacol, 2005, vol. 140, no. 1, pp. 103-13.

81. Van Ginneken V.J.T., Van den Thillart G.E.E.J., Muller H.J., Van Deursen S., Onderwater M., Visee J., Hopmans V., Van Vliet G., Nicolay K. Phospholylation state of red and white muscles in tilapia during graded hypoxia: an in vivo 31P-NMR study. Am. J. Physiol. Regul. Integrat. Comp. Physiol., 1999, vol. 277, pp. 1501-1512.

82. Rees B.B., Bowman J.A.L., Schulte P.M. Structure and sequence conservation of a putative hypoxia response element in the lactate dehydrogenase-B gene of Fundulus. Biol. Bull., 2001, vol. 200, pp. 247-251.

83. Bosworth C.A., Chou C.W., Cole R.B., Rees B.B. Protein expression patterns in zebrafish skeletal muscle: initial characterization and the effects of hypoxic exposure. Proteomics, 2005, vol. 5, no. 5, pp. 1362-1371.

84. Ju Z., Wells M.C., Heater S.J., Walter R.B. Multiple tissue gene expression analyses in Japanese medaka (Oryzias latipes) exposed to hypoxia. Comp. Biochem. Physiol. C., 2007, vol. 145, no. 1, pp. 134-144.

85. Vleugel M.M., Bos R., Buerger H., van der Groep P., Saramaki O.R., Visakorpi T., van der Wall E., van Diest P.J. No amplifications of hypoxia-inducible factor-1alpha gene in invasive breast cancer: a tissue microarray study. Cell. Oncol., 2004, vol. 26, no. 5-6, pp. 347-351.

86. Jensen M.A., Gesser H. Influence of inorganic phosphate and energy state on force in skinned cardiac muscle from freshwater turtle and rainbow trout. J. Comp. Physiol. B., 1999, vol. 169, no. 6, pp. 439-444.

87. Overgaard J., Gessre H. Force development, energy state and ATP production of cardiac muscle from turtles and trout during normoxia and severe hypoxia. J. Exp. Biol., 2004, vol. 207, pp. 1915-1924.

88. Smith R.W., Houlihan D.F., Nilsson H.E., Alexandre J. Tissue-specific changes in RNA synthesis in vivo during anoxia in crucian carp. Am. J. Physiol. Regul. Integrat. Comp. Physiol., 1999, vol. 277, pp. 690-697.

89. MacCormack T.J., Driedzic W.R. The impact of hypoxia on in vivo glucose uptake in a hypoglycemic fish, Myoxocephalus scorpius. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 292, no. 2, pp. R1033-R1042.

90. Plante S., Chabot D., Dutil J. Hypoxia tolerance in Atlantic cod. J. Fish Biol., 1998, vol. 53, no. 6, pp. 1342-1356.

91. Raaij M.T.M., Pit D.S.S., Balm P.H.M., Steffens A.B., Thillart G.E.E.J.M. Behavioral strategy and the physiological stress response in rainbow trout exposed to severe hypoxia. Horm. Behav., 1996, vol. 30, no. 1, pp. 85-92.

92. Raaij M.T.M., Thillart G.E.E.J.M., Vianen G.J., Pit D.S.S., Balm P.H.M., Steffens A.B. Substrate mobilization and hormonal changes in rainbow trout (Oncorhynchus mykiss L.) and common carp (Cyprinus carpio L.) during deep hypoxia and subsequent recovery. J. Comp. Physiol., 1996, vol. 166, no. 7, pp. 443-452.

93. Wells R.M., Baldwin J. Plasma lactate and glucose flushes following burst swimming in silver trevally (Pseudocaranx dentex: Carangidae) support the "releaser" hypothesis. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2006, vol. 143, no. 3, pp. 347-352.

94. Jackson D.C. Acid-base balance during hypoxic hypometabolism: selected vertebrate strategies (review). Respir. Physiol. Neurobiol., 2004, vol. 141, no. 3, pp. 273-283.

95. Zhang Z., Wu R.S.S., Mok H.O.L., Wang Y., Poon W.W.L., Cheng S.H., Kong R.Y.C. Isolation, characterization and expression analysis a hypoxia-responsive glucose transporter gene from the grass carp, Ctenopharyngodon idellus. Eur. J. Biochem., 2003, vol. 270, pp. 3010-3017.

96. Chippari-Gomes A.R., Gomes L.C., Lopes N.P., Val A.L., Almeida-Val V.M. Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 2005, vol. 141, no. 3, pp. 347-355.

97. Bidinotto P.M., Moraes G., Souza R.H.S. Hepatic glycogen and glucose in eight tropical freshwater teleost fish: A procedure for field determinations of micro samples. Bol. Tec. Cepta., 1997, vol. 10, pp. 53-60.

98. Johnston I.A., Bernard L.M. Utilization of the ethanol pathway in carp following exposure to anoxia. J. Exp. Biol., 1983, vol. 104, pp. 73-78.

99. Jurss K. Athanol - ein Endprodukt des anaeroben Stoffwechsels von Fischen. Biol. Rdsch., 1982, vol. 20, no. 3, pp. 178.

100. Lutz P.L., Nilsson G.E. Contrasting strategies for anoxic brain survival - glycolysis up or down. J. Exp. Biol., 1997, vol. 200, pp. 411-419.

101. Waversveld J., Addink A.D.F., Thillart G. The anaerobic energy metabolism of goldfish determined by simultaneous direct and indirect calorimetry during anoxia and hypoxia. J. Comp. Physiol., 1989, vol. 159 B, no. 3, pp. 263-268.

102. Thillart G., Waarde A. Teleosts in hypoxia: aspects of anaerobic metabolism. Mol. Physiol. 1985, vol. 8, no. 3, pp. 393-409.

103. Waarde A. Aerobic and anaerobic ammonia production by fish. Comp. Biochem. Physiol., 1983, vol. 74, no. 4, pp. 675-684.

104. Jorgensen J.B., Mustafa T. The effect of hypoxia on carbohydrate metabolism in flounder (Platichthys flesus L.) II. High energy phosphate compounds and the role of glycolytic and gluconeogenetic enzymes. Comp. Biochem. Physiol., 1980, vol. 67 B, pp. 249-256.

105. Waarde A., De Wilde H.M. Nitrogen metabolism in goldfish, Carassius auratus (L.) pathway of aerobic and muscle mitochondria. Comp. Biochem. Physiol., 1982, vol. 72 B, no. 1, pp. 133-136.

106. Lushchak V.I., Smirnova Y.D., Storey K.B. AMP-deaminase from sea scorpion white muscle: properties and redistribution under hypoxia. Comp. Biochem. Physiol., 1998, vol. 119 B, no. 3, pp. 611-618.

107. Svetlichnyy L.S., Yuneva T.V., Shul'man G.E., Hausman Dzh. A. Ispol'zovanie belka v energeticheskom obmene vetvistousogo rachka Moina macrura pri razlichnom soderzhanii kisloroda v vode. Dokl. RAN, 1994, t. 337, № 3, c. 428-430.

108. Stolbov A.Ya., Stavickaya E.N., Shul'man G.E. Potreblenie kisloroda i ekskreciya azota u chernomorskih ryb razlichnoy ekologicheskoy specializacii pri gipoksicheskih rezhimah. Gidrobiol. zh., 1995, t. 31, № 1, c. 73-78.

109. Shul'man G.E., Abolmasova G.I., Stolbov A.Ya. Ispol'zovanie belka v energeticheskom obmene gidrobiontov. Usp. sovr. biol., 1993, t. 113, № 5, c. 576-586.

110. Romanenko V.D., Arsan O.M., Solomatina V.D. Mehanizmy temperaturnoy akklimacii ryb. K.: Nauk. dumka, 1991, 192 s.

111. Owen T.G., Hochachka P.W. Purification and properties of dolphin muscle aspartate and alanine transaminases and their possible roles in the energy metabolism of diving mammals. Biochem. J., 1974, vol. 143, pp. 541-553.

112. Mommsen Th.P., French C.J., Hochachka P.W. Sites and patterns of protein and amino acid utilization during spawning migration of salmon. Can. J. Zool., 1980, vol. 58, pp. 1785-1799.

113. Almeida-Val V.M., Val A.L., Duncan W.P., Souza F.C., Paula-Silva M.N., Land S. Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels. Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 2000, vol. 125, no. 2, pp. 219-226.

114. Panepucci L., Fernandes M.N., Sanches J.R., Rantin F.T. Changes in lactate dehydrogenase and malate dehydrogenase activities during hypoxia and after temperature acclimation in the armored fish, Rhinelepis strigosa (Siluriformes, Loricariidae). Rev. Bras. Biol., 2000, vol. 60, no. 2, pp. 353-360.

115. Skorkowski E.F. Mitochondrial malic enzyme from crustacean and fish muscle. Comp. Biochem. Physiol., 1988, vol. 90 B, pp. 19-24.

116. Bragin E.O., Dergunov A.D. i dr. Rol' fosfolipazy A2 v anoksicheskom povrezhdenii energozavisimyh funkciy mitohondriy. Vopr. med. Himii, 1977, t. 23, № 5, s. 673-677.

117. Abele D., Puntarulo S. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2004, vol. 138, no. 4, pp. 405-415.

118. Hermes-Lima M., Zenteno-Savin T. Animal response to drastic changes in oxygen availability and physiological oxidative stress (review). Comp. Biochem. Physiol. C. Toxicol. Pharmacol, 2002, vol. 133, no. 4, pp. 537-556.

119. Hattink J., De Boeck G., Blust R. Toxicity, accumulation, and retention of zinc by carp under normoxic and hypoxic conditions. Environ. Toxicol. Chem., 2006, vol. 25, no. 1, pp. 87-96.


Login or Create
* Forgot password?