Ufa, Ufa, Russian Federation
From the perspective of ecological adaptation of plants, from the position of interdisciplinary science - supramolecular chemistry, the dynamics of supramolecular topologically associated structures of the total chromatin matrix (TChrM) is considered: Np-nucleoplasm, ChrI-chromatin is fragile and ChrII-strongly bound to the nuclear matrix and NM itself. At the interface of which, there is a proteomic super molecular reorganization of non-histone and histone ensembles of the TChrM proteome, the macrokinetics of which is important for understanding the features of biochemical processes in the genetic subsystems of a plant (root → mesocotyl → coleoptile) of the transition period from heterotrophic to autotrophic plant development. An algorithm for the dynamics of proteomic super molecular ensembles at the interface of the supramolecular structures of TChrM is shown. The positioning role of the "core" histone (H3 + H4) ꞌꞌ ensembles in the supra-blocks: Np, Chr-II, NM in the winter phenotype, in the zone of homeomorphism (according to the topological terminology of R. Tom) of the root system, as an integrative stabilization of the space-temporal , physiological and genetic stress resistance of the organism relative to spring wheat. The data presented may be of interest to biophysicists and enter the database of the ontology of the stages of growth and development of stress resistance of plants in the environment.
Proteomics, Interphase chromatin topology, supramolecular biochemistry, wheat, genetic stress resistance
1. Len Zh-M. Supramolekulyarnaya himiya. Novosibirsk, Nauka, 1998, 333 s. @@Lehn J.-M., Supramolecular chemistry. Novosibirsk, Science, 1998, 333 p. (In Russ.)
2. Ivanova E.A. Osobennosti «strukturirovannyh processov» v interfaznyh yadrah u pshenicy, vyvedennoy v usloviyah holodovogo stressa. Ekobioteh, 2019, t. 2, № 4, s. 1-6. DOI: 10.3 1163/2618-964X-2019-2-4-000-000 @@Ivanova E.A. Features of "structured processes" in interphase nucleus wheat bred under cold stress. Ecobiotech, 2019, vol. 2, no. 4, 1-6. (In Russ.) ; DOI: https://doi.org/10.31163/2618-964X-2019-2-4-445-450; EDN: https://elibrary.ru/SATBHH
3. Ivanova E.A. Biofizicheskaya ekologiya v rakurse koncepcii supramolekulyarnoy biohimii. Aktual'nye voprosy biologicheskoy fiziki i himii, 2020, t. 5, № 1, s. 194-200. @@Ivanova E.A. Biophysical ecology from the perspective of the concept of supramolecular biochemistry.Russian journal of biological physics and chemistry, 2020, vol. 5, no. 1, pp. 194-200. (In Russ.) ; EDN: https://elibrary.ru/ZATIAU
4. Ivanova E.A. Biofizicheskaya ekologiya v rakurse koncepcii supramolekulyarnoy biohimii. Materialy HV mezhdunarodnoy nauchnoy konferencii «Aktual'nye voprosy biologicheskoy fiziki i himii». Sevastopol', 2020, c. 179-180. @@Ivanova E.A. Biophysical ecology from the perspective of the concept of supramolecular biochemistry. Proceedings of the XV international scientific conference "Modern trends of biological physics and chemistry." Sevastopol, 2020, pp. 179-180. (In Russ.)
5. Ivanova E.A. Arg-H proteo-processing as model system for organization of karyogenomics Interphase chromatin of mature germs of wheats, formed in the conditions of cold stress. Journal of Stress Physiology & Biochemistry, 2017, vol. 13, no. 4, pp. 65-73.
6. Ivanova E.A. On the question of epigenetic mechanisms of kariogenomic winter wheat in the concept of supramolecular biochemistry. Journal of Stress Physiology & Biochemistry, 2019, vol. 15, no. 3, pp. 14-20.
7. Ivanova E.A. Analysis of the proteomics of chromatin suprastructures as areas of replication (origins) and perception of signal and stress systems in the development of spring wheat. Journal of Stress Physiology & Biochemistry, 2020, vol. 16, no. 4, pp. 22-34.
8. Ivanova E.A. Stress resistance on the example of supramolecular-genetic level of plant development. Journal of Stress Physiology & Biochemistry, 2021. submitted to the press.
9. Shaytan K.V. Fundamental'nye zakonomernosti formirovaniya prostranstvennyh struktur konformacionno podvizhnyh molekul. Sbornik nauchnyh trudov VI s'ezda biofizikov Rossii. Sochi: Kubanskiy gosudarstvennyy universitet, 2019, tom 1, c. 36. @@Shaitan K.V. The fundamental laws of the formation of spatial structures of conformationally mobile molecules. Collection of scientific papers of the VI Congress of Biophysicists of Russia. Sochi: Kuban State University, 2019, vol. 1, p. 36. (In Russ.) ; EDN: https://elibrary.ru/PLTPNA
10. Tom R. Strukturnaya ustoychivost' i morfogenez. M.: Logos, 2002, 280 s. @@Tom R. Structural Stability and Morphogenesis. M.: Logos, 2002, 280 p. (In Russ.)
11. Belousov L.V. Biologicheskiy morfogenez. M.: MGU, 1987, 234 s. @@Belousov L.V. Biological morphogenesis. M: Moscow State University, 1987, 234 p. (In Russ.)
12. Belousov L.V. Morfomehanicheskiy aspekt epigeneza. Genetika, 2006, t. 42, № 9, c. 1165-1169. @@Belousov L.V. Morphomechanical aspect of epigenesis. Genetics, 2006, vol. 42, no. 9, pp. 1165-1169. (In Russ.)
13. Barlou P.U. Delenie kletok v meristemah i znachenie etogo processa dlya organogeneza i formoobrazovaniya rasteniy. Ontogenez, 1994, t. 25, № 5, s. 5-38. @@Barlou P.U. Cell division in meristems and the importance of this process for plant organogenesis and morphogenesis. Ontogenesis, 1994, vol. 25, no. 5, pp. 5-38. (In Russ.)
14. Mistelli T., Spector D.L. The Nucleus. New York: Cold Spring Harbor Laboratory Press, 2011.
15. Galimzyanov A.V., Stupak E.E., Churaev R.N. Epigennye seti, teoriya, modeli, eksperiment. Uspehi sovremennoy biologii, 2019, t. 139, № 2, c. 107-113. @@Galimzyanov A.V., Stupak E.E., Churaev R.N. Epigenetic networks, theory, models, experiment. Advances in modern biology, 2019, vol. 139, no. 2, pp. 107-113. (In Russ.) ; DOI: https://doi.org/10.1134/S0042132419020030; EDN: https://elibrary.ru/ZBGRIL
16. Lobov V.P., Daskalyuk A.P. Sravnitel'noe issledovanie DNK ozimyh i yarovyh form pshenicy. Dokl. AN SSSR, 1984, tom 275, № 1, s. 218-221. @@Lobov V.P., Daskalyuk A.P.Comparative study of the DNA of winter and spring forms of wheat. Dokl. Academy of Sciences of the USSR, 1984, vol. 275, no. 1, pp. 218-221. (In Russ.)
17. Churaev R.N. Epigenetika: gennye i epigennye seti v onto- i filogeneze. Genetika, 2006, t. 42, № 9, s. 1276-1296. @@Churaev R.N. Epigenetics: gene and epigenetic networks in ontogeny and phylgenesis. Genetics, 2006, vol. 42, no. 9, pp. 1276-1296. (In Russ.)
18. Smith E.L., De Lange R.J., Bonner J. Chemistry and biology of the histones. Physiol. Revs., 1970, vol. 50, no. 2, pp. 159-170.
19. Gel'fand M.S. Evolyuciya regulyatornyh sistem. Materialy dokladov V s'ezda biofizikov Rossii. Rostov-na-Donu: Izdatel'stvo Yuzhnogo federal'nogo universiteta, 2015, t. 1, s. 19. @@Gelfand M.C. The evolution of regulatory systems. Materials of reports of the V Congress of Biophysicists of Russia. Rostov-on-Don: Publishing House of the Southern Federal University, 2015, vol. 1, p. 19. (In Russ.)
20. Finkel'shteyn A.V., Pticin O.B. Fizika belka. Moskva: Knizhnyy dom, 2005, 460 s. @@Finkelstein A.V., Ptitsin O.B. Physics of protein. Moscow: Book house, 2005, 460 p. (In Russ.) ; EDN: https://elibrary.ru/QKNVNB
21. Ivanova E.A., Ahmetov R.R. Modifikaciya negistonovyh belkov v prorostkah rasteniy. Fiziologiya rasteniy, 1987, t. 34, № 3, s. 507-512. @@Ivanova E.A, Akhmetov R.R. Modification of non-histon proteins in plant seedlings. Physiology plants, 1987, vol. 34, no. 3, pp. 507-512. (In Russ.)
22. Robin H. Epigenetics. An overview. Dev. Genet., 1994, vol. 15, no. 6, pp. 453-457.
23. Konarev V.G. Morfogenez rasteniy i molekulyarno-biologicheskiy analiz. Sankt-Peterburg: RASHN, VIR im. N.I.Vavilova, 1998, 370 s. @@Konarev V.G. Morphogenesis and molecular-biological analysis of plants. Saint-Peterburg, VIR, 1998, 370 p. (In Russ.)