POSSIBLE ROLE OF GLOBULAR PROTEIN POLYMORPHS INDUCED BY INTERACTION WITH SALT IONS IN LIQUIDLIQUID TYPE PHASE TRANSITIONS
Abstract and keywords
Abstract (English):
Liquid-liquid (L-L) type phase transitions in water-salt dispersions of native (N*, N) globular proteins in the temperature range between thermal (D*) and cold (D) denaturation have been considered. Protein intermediates (I, I*) arising as a result of the ion non-equilibrium (de)sorption in the process of D↔N and D*↔N* transitions are assumed to be involved in the L-L phase transition forming clusters and fibrils in the main phase of N and N* proteins. Thus, they compensate for their excess chemical potential (ChPot) caused by unbalanced distribution of adsorbed salt ions in protein structure as compared to N protein. A temperature model for the behavior of ChPots (∆µi) of various states of the protein (low-temperature i = D, N, I and high-temperature i = D*, N*, I*, transitions between them), as well as the temperature dependence of the solvent ChPot (∆µ1) are presented in the form of phase diagrams. The relationship between the values of ∆µ1 and the temperatures of L-L transitions (upper and lower critical solution temperatures) as well as the reasons for the nonideal behavior of osmotic pressure in water-salt protein dispersions are discussed on this basis.

Keywords:
protein intermediates, clusters, liquid-liquid phase transitions, phase diagram, osmotic pressure
Text
Publication text (PDF): Read Download
References

1. Finkel'shteyn A.V., Pticyn O.B. Fizika belka. M.: Universitet, 2002, 376 s. @@Finkelstein A.V., Ptitsyn A.V. Protein Physics, Boston e.a.: Academic Press, 1st ed., 2002, 354 p. (In Russ.)

2. Sleutel M., van Driessche A.E.S. Role of clusters in nonclassical nucleation and growth of protein crystal. Proc. Natl. Acad. Sci. U.S.A, 2014, vol. 111, no.5, pp. E546-E553. doi:https://doi.org/10.1073/pnas.1309320111

3. Golub N., Meremyanin A., Markossian K., Eronina T., Chebotareva N., Asryants R., Mironets V., Kurganov B. Evidence for the formation of start aggregates as an initial stage of protein aggregation. FEBS Lett., 2007, vol. 581, no. 22, pp. 4223-4227. doi:https://doi.org/10.1016/j.febslet.2007.07.066

4. Shin Y., Brangwynne C.P. Liquid phase condensation in cell physiology and disease. Science, 2017, vol. 357, no. 6357, p. eaaf4382. doi:https://doi.org/10.1126/science.aaf4382

5. Yewdall N.A., Mason A.T., van Hest J.C.M. The hallmarks of living systems: towards creating artificial cells.Interface Focus, 2018, vol. 8, no. 5, p. 20180023. doi:https://doi.org/10.1098/rsfs.2018.0023

6. Rozhkov S.P. Three-component system water-biopolymer-ions as a model of molecular mechanisms of osmotic homeostasis. Biophysics, 2001, vol. 46, no. 1, pp. 51-57.

7. Rozhkov S.P., Goryunov A.S. Phase states of water-protein(polypeptide)-salt system and reaction to external environment factors. Biophysics, 2014, vol. 59, no. 1, pp. 43-48. doi:https://doi.org/10.1134/S0006350914010175

8. Fandrich M., Schmidt M., Grigorieff N. Recent progress in understanding Alzheimer’s b-amyloid structures. Trends Biochem. Sci., 2011, vol. 36, no. 6, pp. 338-345. doi:https://doi.org/10.1016/j.tibs.2011.02.002

9. Sivalingam V., Prasanna N.L., Sharma N., Prasad A., Patel B.K. Wild-type hen egg white lysozyme aggregation in vitro can form self-seeding amyloid conformational variants. Biophys. Chem., 2016, vol. 219, pp. 28-37. doi:https://doi.org/10.1016/j.bpc.2016.09.009

10. Nicolai T., Durand D. Controlled food protein aggregation for new functionality. Curr. Opin. Colloid Interface Sci., 2013, vol. 18, no. 4, pp. 249-256. doi:https://doi.org/10.1016/j.cocis.2013.03.001

11. Vekilov P.G. Phase diagrams and kinetics of phase transitions in protein solutions. J. Phys: Condens. Matter, 2012, vol. 24, no. 19, p. 193101. doi:https://doi.org/10.1088/0953-8984/24/19/193101

12. Dumetz A.C., Chockla A.M., Kaler E.W., Lenhoff A.M. Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys. J., 2008, vol. 94, no. 2, pp. 570-583. doi:https://doi.org/10.1529/biophysj.107.116152

13. Uversky V.N. Under-Folded Proteins: Conformational Ensembles and Their Roles in Protein Folding, Function, and Pathogenesis. Biopolymers, 2013, vol. 99, no. 11, pp. 870-887. DOI:https://doi.org/10.1002/bip.22298

14. El-Baba T.J, Kim D., Rogers D.B., Khan F.A. Hedes D.A., Russell D.H., Clemmer D.E. Long lived intermediates in a cooperative two-state folding transitions. J.Phys.Chem.B, 2016, vol. 120, no. 47, pp. 12040-12046. doi:https://doi.org/10.1021/acs.jpcb.6b08932

15. Feig M., Sugita Y. Reaching new levels of realism in modeling biological macromolecules in cellular environments. J. Mol. Graph. Model., 2013, vol. 45, pp. 144-156. doi:https://doi.org/10.1016/j.jmgm.2013.08.017

16. Hyman A.A., Weber C.A., Julicher F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol., 2014, vol. 30, pp. 39-58. doi:https://doi.org/10.1146/annurev-cellbio-100913-013325

17. Rozhkov S.P., Goryunov A.S. Stable, metastable, and supercritical phases in solutions of globular proteins between upper and lower denaturation temperatures. Biophysics, 2017, vol. 62, no. 4, pp. 539-546. doi:https://doi.org/10.1134/S0006350917040182

18. Rozhkov S.P., Goryunov A.S. Thermodynamic study of protein phases formation and clustering in model water-protein-salt solutions. Biophysic. Chem., 2010, vol. 151, pp. 22-28. doi:https://doi.org/10.1016/j.bpc.2010.04.007

19. Grigsby J.J., Blanch H.W., Prausnitz J.M. Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH. Biophys.Chem., 3001, vol. 91, pp. 231. doi:https://doi.org/10.1016/s0301-4622(01)00173-9

20. Galkin O., Vekilov P.G. Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc. Natl. Acad. Sci. U.S.A, 2000, vol. 97, no. 12, pp. 6277-6281. doi:https://doi.org/10.1073/pnas.110000497

21. Vekilov P.G., Vorontsova M.A. Nucleation precursors in protein crystallization. Acta Crystallogr. F Struct. Biol.Commun., 2014, vol. 70, no. 3, pp. 271-282. doi:https://doi.org/10.1107/S2053230X14002386

22. Rozhkov S.P., Goryunov A.S. Dynamic protein clusterization in supercritical region of the phase diagram of water-protein-salt solutions. J. Supercrit. Fluid., 2014, vol. 95, pp. 68-74. doi:https://doi.org/10.1016/j.supflu.2014.07.028

23. Matsarskaia O., Braun M.K., Roosen-Runge F. Wolf M., Zhang F., Roth R., Schreiber F. Cation-Induced Hydration Effects Cause Lower Critical Solution Temperature Behavior in Protein Solutions. J. Phys. Chem. B, 2016, vol. 120, no. 31, pp. 7731-7736. doi:https://doi.org/10.1021/acs.jpcb.6b04506

24. Han J., Herzfeld J.Interpretation of the osmotic behavior of sickle cell hemoglobin solutions: different interactions among monomers and polymers. Biopolymers, 1998, vol. 45, no. 4, pp. 299-306. doi:https://doi.org/10.1002/(SICI)1097-0282(19980405)45:4<299::AID-BIP4>3.0.CO;2-G

25. Kaibara K., Watanabe T., Miyakawa K. Characterization of critical processes in liquid- liquid phase separation of the elastomeric protein- water system: microscopic observations and light scattering measurements. Biopolymers, 2000, vol. 53, no. 5, pp. 369-379. doi:https://doi.org/10.1002/(SICI)1097-0282(20000415)53:5<369::AID-BIP2>3.0.CO;2-5

26. Lomakin A., Asherie N., Benedek G.B. Aeolotropic interactions of globular proteins. Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 17, pp. 9465-9458. doi:https://doi.org/10.1073/pnas.96.17.9465

27. Luo H., Leeb N., Wang X., Li Y., Schmelzer A., Hunter A.K., Pabst T., Wang W.K. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography. J. Chromatogr., A, 2017, vol. 1488, p. 57-67. doi:https://doi.org/10.1016/j.chroma.2017.01.067

28. Yaminsky I.V., Gvozdev N.V., Sil’nikova M.I., Rashkovich L.N. Atomic Force Microscopy Study of Lysozyme Crystallization. Crystallography Reports, 2002, vol. 47, suppl. 1, pp. S149-S158.

29. Gillespie C.M. Asthagiri D., Lenhoff A.M. Polymorphic protein crystal growth: in uence of hydration and ions in glucose isomerase. Cryst. Growth Des., 2014, vol. 14, no. 1, pp. 46-57. doi:https://doi.org/10.1021/cg401063b

30. Von Hippel P.H., Schleich T. The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In: Timasheff, S.N. Fasman, G.D., Eds. Structure and Stability of Biological Macromolecules, N.Y.: Marcel-Dekker, 1969, pp. 417-574.

31. Record T.M., Anderson C.F., Lohman T.M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening and ion effects on water activity. Quart. Rev. Biophys., 1978, vol. 11, no. 2, pp. 103-178. doi:https://doi.org/10.1017/s003358350000202x

32. Collins K.D. Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization Biophys. Chem., 2006, vol. 119, no. 3, pp. 271-281. doi:https://doi.org/10.1016/j.bpc.2005.08.010

33. Uversky V.N., Li J., Fink A.L. Metal-triggered structural transformations, aggregation, and fibrillation of human synuclein. J. Biol. Chem., 2001, vol. 276, no. 47, pp. 44284-44296. doi:https://doi.org/10.1074/jbc.M105343200

34. Senske M., Constantinescu-Aruxandei D., Havenith M., Herrmann C., Weingartner H., Ebbinghaus S. The temperature dependence of the Hofmeister series: thermodynamic fingerprints of cosolute-protein interactions. Phys. Chem. Chem. Phys., 2016, vol. 18, no. 43, pp. 29698-29708. doi:https://doi.org/10.1039/c6cp05080h

35. Dudev T., Lim C.Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem. Rev., 2014, vol. 114, no. 1, pp. 538-556. doi:https://doi.org/10.1021/cr4004665

36. Aldabaibeh N., Jones M.J., Myerson A.S., Ulrich J. The solubility of orthorhombic lysozyme crystals obtained at high pH. Cryst. Growth Des., 2009, vol. 9, no. 7, pp. 3313-3317. doi:https://doi.org/10.1021/cg900113e

37. Veesler S., Ferte N., Costes M.-S., Czjzek M., Astier J-P. Temperature and ph effect on the polymorphism of aprotinin (BPTI) in sodium bromide solutions. Cryst. Growth Des., 2004, vol. 4, no. 6, pp. 1137-1141. doi:https://doi.org/10.1021/cg0498195

38. Wang Y., Annunziata O.Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition. J. Phys. Chem. B., 2006, vol. 111, no. 5, pp. 1222-1230. doi:https://doi.org/10.1021/jp065608u

39. Cin ar H., Fetahaj Z., Cinar S., Vernon R.M., Chan H.S., Winter R.H.A. Temperature, hydrostatic pressure, and osmolyte effects on liquid-liquid phase separation in protein condensates: physical chemistry and biological implications. Chem. Eur. J., 2019, vol. 25, pp. 13049-13069. doi:https://doi.org/10.1002/chem.201902210

40. Shiryayev A., Pagan D.L., Gunton J.D., Rhen D.S., Saxena A., Lookman T. Role of solvent for globular proteins in solution. J. Chem. Phys., 2005. vol. 122, no. 23, p. 234911. doi:https://doi.org/10.1063/1.1931655

41. Ma L., Cui Q. Temperature dependence of salt-protein association is sequence specific. Biochemistry, 2006, vol. 45, no. 48, pp. 14466-14472. doihttps://doi.org/10.1021/bi0613067

42. Atkins P.W. Physical Chemistry, Oxford, Melbourne, Tokyo: Oxford University Press, 1998, 997 p.

43. Bian L., Wu D., Hu W. Temperature-induced conformational transition of bovine serum albumin in neutral aqueous solution by reversed-phase liquid chromatography. Biomed. Chromatogr., 2014, vol. 28, no. 2, pp. 295-301. doi:https://doi.org/10.1002/bmc.3020

44. Hollowell H.N., Younvanich S.S., McNevin S.L., Britt B.M. Thermodynamic analysis of the low- to physiological-temperature nondenaturational conformational change of bovine carbonic anhydrase. J. Biochem. Mol. Biol., 2007, vol. 40, no. 2, pp. 205-211. DOI:https://doi.org/10.5483/bmbrep.2007.40.2.205

45. Aznauryan M., Nettels D., Holla A., Hofmann H., Schuler B. Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J. Am. Chem. Soc., 2013, vol. 135, no. 38, pp. 14040-14043. doi:https://doi.org/10.1021/ja407009w

46. Matsarskaia O., Roosen-Runge F., Lotze G., Moeller J., Mariani A., Zhang F., Schreiber F. Tuning phase transitions of aqueous protein solutions by multivalent cations. Phys. Chem. Chem. Phys., 2018, vol. 20, no. 42, pp. 27214-27225. doi:https://doi.org/10.1039/c8cp05884a

47. Zhang F., Weggler S., Ziller M.J., Ianeselli L., Heck B.S., Hildebrandt A., Kohlbacher O., Skoda M.W.A., Jacobs R.M.J., Schreiber F. Universality of protein reentrant condensation in solution induced by multivalent metal ions. Proteins, 2010, vol. 78, no. 16, pp. 3450-3457. doi:https://doi.org/10.1002/prot.22852

48. Luong T.Q., Kapoor S., Winter R. Pressure - A gateway to fundamental insights into protein solvation, dynamics, and function. ChemPhysChem, 2015, vol. 16, no. 17, pp. 3555-3571. doi:https://doi.org/10.1002/cphc.201500669

49. Johari G.P. The Tammann phase boundary, exothermic disordering and the entropy contribution change on phase transformation. Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 2483-2487. doi:https://doi.org/10.1039/b100246p

50. Hawley S.A. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry, 1971, vol. 10, no. 13, pp. 2436-2442. doi:https://doi.org/10.1021/bi00789a002

51. Smeller L. Pressure temperature phase diagrams of biomolecules. Biochim. Biophys. Acta, 2002, vol. 1595, no. 1-2, pp. 11-29. doi:https://doi.org/10.1016/S0167-4838(01)00332-6

52. Scharnagl C., Reif M., Friedrich J. Stability of proteins: Temperature, pressure and the role of the solvent. Biochim. Biophys. Acta, 2005, vol. 1749, no. 2, pp. 187-213. doi:https://doi.org/10.1016/j.bbapap

53. Edsall J.T. The size, shape and hydration of of protein molecules. In: Neurath H., Bailey K., Eds. The proteins, vol. 1, part B. NY: Academic Press inc., 1953, pp. 549-726.

54. Kornblatt J.A., Kornblatt M.J. The effects of osmotic and hydrostatic pressures on macromolecular systems. Biochim. Biophys. Acta, 2002, vol. 1595, no. 1-2, pp. 30-47. doi:https://doi.org/10.1016/s0167-4838(01)00333-8

55. Royer C., Winter R. Protein hydration and volumetric properties. Curr. Opin. Colloid Interface Sci., 2011, vol. 16, no. 6, pp. 568-571. doi:https://doi.org/10.1016/j.cocis.2011.04.008

56. Juarez J., Lopez S.G., Cambon A., Taboada P., Mosquera V. Influence of electrostatic interactions on the fibrillation process of human serum albumin. J. Phys. Chem. B, 2009, vol. 113, no. 30, pp. 10521-10529. doi:https://doi.org/10.1021/jp902224d

57. Miti T., Mulaj M., Schmidt J.D., Muschol M. Stable, metastable, and kinetically trapped amyloid aggregate phases. Biomacromolecules, 2015, vol. 16, no. 1, pp. 326-335. doihttps://doi.org/10.1021/bm501521r

58. Rescic J., Vlachy V., Jamnik A., Glatter O. Osmotic pressure, small-angle X-ray, and dynamic light scattering studies of human serum albumin in aqueous solutions. J. Colloid Interface Sci., 2001, vol. 239, no. 1, pp. 49-57. doi:https://doi.org/10.1006/jcis.2001.7545

59. McBride D.W., Rodgers V.G.J.Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective. Biophys. Chem., 2013, vol. 184, pp. 79-86. doi:https://doi.org/10.1016/j.bpc.2013.09.005

60. Medda L., Monduzzi M., Salis A. The molecular motion of bovine serum albumin under physiological conditions is ion specific. Chem.Commun. (Camb)., 2015, vol. 51, no. 30, pp. 6663-6666. doi:https://doi.org/10.1039/c5cc01538c.

61. Navarra G., Giacomazza D., Leone M., Librizzi F., Militello V., San Biagio P.L. Thermal aggregation and ion-induced cold-gelation of bovine serum albumin. Eur. Biophys. J., 2009, vol. 38, no. 4, pp. 437-446. doi:https://doi.org/10.1007/s00249-008-0389-6

62. Fullerton G.D., Kanal K.M., Cameron I.L. Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration. Cell Biol.Int., 2006, vol. 30, no. 1, pp. 86-92. doi:https://doi.org/10.1016/j.cellbi.2005.11.001

63. Arabi S.H., Aghelnejad B., Schwieger C., Meister A., Kerth A., Hinderberger D. Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomater. Sci., 2018, vol. 6, no. 3, pp. 478-492. doi:https://doi.org/10.1039/c7bm00820a

64. Ikenoue T., Lee Y.-H., Kardos J., Saiki M., Yagi H., Kawata Y., Goto Y. Cold denaturation of a-synuclein amyloid fibrils. Angew. Chem.Int. Ed. Engl., 2014, vol. 53, no. 30, pp. 7799-7804. doi:https://doi.org/10.1002/anie.201403815

65. Adachi M., So M., Sakurai K., Kardos J., Goto Y. Supersaturation-limited and unlimited phase transitions compete to produce the pathway complexity in amyloid fibrillation. J. Biol. Chem., 2015, vol. 290, no. 29, pp. 18134-18145. doi:https://doi.org/10.1074/jbc.M115.648139


Login or Create
* Forgot password?