Liquid-liquid (L-L) type phase transitions in water-salt dispersions of native (N*, N) globular proteins in the temperature range between thermal (D*) and cold (D) denaturation have been considered. Protein intermediates (I, I*) arising as a result of the ion non-equilibrium (de)sorption in the process of D↔N and D*↔N* transitions are assumed to be involved in the L-L phase transition forming clusters and fibrils in the main phase of N and N* proteins. Thus, they compensate for their excess chemical potential (ChPot) caused by unbalanced distribution of adsorbed salt ions in protein structure as compared to N protein. A temperature model for the behavior of ChPots (∆µi) of various states of the protein (low-temperature i = D, N, I and high-temperature i = D*, N*, I*, transitions between them), as well as the temperature dependence of the solvent ChPot (∆µ1) are presented in the form of phase diagrams. The relationship between the values of ∆µ1 and the temperatures of L-L transitions (upper and lower critical solution temperatures) as well as the reasons for the nonideal behavior of osmotic pressure in water-salt protein dispersions are discussed on this basis.
protein intermediates, clusters, liquid-liquid phase transitions, phase diagram, osmotic pressure
1. Finkel'shteyn A.V., Pticyn O.B. Fizika belka. M.: Universitet, 2002, 376 s. @@Finkelstein A.V., Ptitsyn A.V. Protein Physics, Boston e.a.: Academic Press, 1st ed., 2002, 354 p. (In Russ.)
2. Sleutel M., van Driessche A.E.S. Role of clusters in nonclassical nucleation and growth of protein crystal. Proc. Natl. Acad. Sci. U.S.A, 2014, vol. 111, no.5, pp. E546-E553. doi:https://doi.org/10.1073/pnas.1309320111
3. Golub N., Meremyanin A., Markossian K., Eronina T., Chebotareva N., Asryants R., Mironets V., Kurganov B. Evidence for the formation of start aggregates as an initial stage of protein aggregation. FEBS Lett., 2007, vol. 581, no. 22, pp. 4223-4227. doi:https://doi.org/10.1016/j.febslet.2007.07.066 ; ; EDN: https://elibrary.ru/LKRQZP
4. Shin Y., Brangwynne C.P. Liquid phase condensation in cell physiology and disease. Science, 2017, vol. 357, no. 6357, p. eaaf4382. doi:https://doi.org/10.1126/science.aaf4382 ; ; EDN: https://elibrary.ru/YGNMBB
5. Yewdall N.A., Mason A.T., van Hest J.C.M. The hallmarks of living systems: towards creating artificial cells.Interface Focus, 2018, vol. 8, no. 5, p. 20180023. doi:https://doi.org/10.1098/rsfs.2018.0023 ; ; EDN: https://elibrary.ru/BUMHKG
6. Rozhkov S.P. Three-component system water-biopolymer-ions as a model of molecular mechanisms of osmotic homeostasis. Biophysics, 2001, vol. 46, no. 1, pp. 51-57.
7. Rozhkov S.P., Goryunov A.S. Phase states of water-protein(polypeptide)-salt system and reaction to external environment factors. Biophysics, 2014, vol. 59, no. 1, pp. 43-48. doi:https://doi.org/10.1134/S0006350914010175 ; ; EDN: https://elibrary.ru/SKRJKP
8. Fandrich M., Schmidt M., Grigorieff N. Recent progress in understanding Alzheimer’s b-amyloid structures. Trends Biochem. Sci., 2011, vol. 36, no. 6, pp. 338-345. doi:https://doi.org/10.1016/j.tibs.2011.02.002
9. Sivalingam V., Prasanna N.L., Sharma N., Prasad A., Patel B.K. Wild-type hen egg white lysozyme aggregation in vitro can form self-seeding amyloid conformational variants. Biophys. Chem., 2016, vol. 219, pp. 28-37. doi:https://doi.org/10.1016/j.bpc.2016.09.009 ; ; EDN: https://elibrary.ru/XTOFPN
10. Nicolai T., Durand D. Controlled food protein aggregation for new functionality. Curr. Opin. Colloid Interface Sci., 2013, vol. 18, no. 4, pp. 249-256. doi:https://doi.org/10.1016/j.cocis.2013.03.001
11. Vekilov P.G. Phase diagrams and kinetics of phase transitions in protein solutions. J. Phys: Condens. Matter, 2012, vol. 24, no. 19, p. 193101. doi:https://doi.org/10.1088/0953-8984/24/19/193101 ; ; EDN: https://elibrary.ru/XZGNYF
12. Dumetz A.C., Chockla A.M., Kaler E.W., Lenhoff A.M. Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys. J., 2008, vol. 94, no. 2, pp. 570-583. doi:https://doi.org/10.1529/biophysj.107.116152
13. Uversky V.N. Under-Folded Proteins: Conformational Ensembles and Their Roles in Protein Folding, Function, and Pathogenesis. Biopolymers, 2013, vol. 99, no. 11, pp. 870-887. DOI:https://doi.org/10.1002/bip.22298 ; ; EDN: https://elibrary.ru/RFPQNN
14. El-Baba T.J, Kim D., Rogers D.B., Khan F.A. Hedes D.A., Russell D.H., Clemmer D.E. Long lived intermediates in a cooperative two-state folding transitions. J.Phys.Chem.B, 2016, vol. 120, no. 47, pp. 12040-12046. doi:https://doi.org/10.1021/acs.jpcb.6b08932 ; ; EDN: https://elibrary.ru/YGSEOT
15. Feig M., Sugita Y. Reaching new levels of realism in modeling biological macromolecules in cellular environments. J. Mol. Graph. Model., 2013, vol. 45, pp. 144-156. doi:https://doi.org/10.1016/j.jmgm.2013.08.017 ; ; EDN: https://elibrary.ru/RISGOV
16. Hyman A.A., Weber C.A., Julicher F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol., 2014, vol. 30, pp. 39-58. doi:https://doi.org/10.1146/annurev-cellbio-100913-013325
17. Rozhkov S.P., Goryunov A.S. Stable, metastable, and supercritical phases in solutions of globular proteins between upper and lower denaturation temperatures. Biophysics, 2017, vol. 62, no. 4, pp. 539-546. doi:https://doi.org/10.1134/S0006350917040182 ; ; EDN: https://elibrary.ru/XOFJZL
18. Rozhkov S.P., Goryunov A.S. Thermodynamic study of protein phases formation and clustering in model water-protein-salt solutions. Biophysic. Chem., 2010, vol. 151, pp. 22-28. doi:https://doi.org/10.1016/j.bpc.2010.04.007 ; ; EDN: https://elibrary.ru/MXLNLJ
19. Grigsby J.J., Blanch H.W., Prausnitz J.M. Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH. Biophys.Chem., 3001, vol. 91, pp. 231. doi:https://doi.org/10.1016/s0301-4622(01)00173-9
20. Galkin O., Vekilov P.G. Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc. Natl. Acad. Sci. U.S.A, 2000, vol. 97, no. 12, pp. 6277-6281. doi:https://doi.org/10.1073/pnas.110000497
21. Vekilov P.G., Vorontsova M.A. Nucleation precursors in protein crystallization. Acta Crystallogr. F Struct. Biol.Commun., 2014, vol. 70, no. 3, pp. 271-282. doi:https://doi.org/10.1107/S2053230X14002386 ; ; EDN: https://elibrary.ru/USKGUF
22. Rozhkov S.P., Goryunov A.S. Dynamic protein clusterization in supercritical region of the phase diagram of water-protein-salt solutions. J. Supercrit. Fluid., 2014, vol. 95, pp. 68-74. doi:https://doi.org/10.1016/j.supflu.2014.07.028 ; ; EDN: https://elibrary.ru/SELBEA
23. Matsarskaia O., Braun M.K., Roosen-Runge F. Wolf M., Zhang F., Roth R., Schreiber F. Cation-Induced Hydration Effects Cause Lower Critical Solution Temperature Behavior in Protein Solutions. J. Phys. Chem. B, 2016, vol. 120, no. 31, pp. 7731-7736. doi:https://doi.org/10.1021/acs.jpcb.6b04506 ; ; EDN: https://elibrary.ru/WSGEVD
24. Han J., Herzfeld J.Interpretation of the osmotic behavior of sickle cell hemoglobin solutions: different interactions among monomers and polymers. Biopolymers, 1998, vol. 45, no. 4, pp. 299-306. doi:https://doi.org/10.1002/(SICI)1097-0282(19980405)45:4<299::AID-BIP4>3.0.CO;2-G
25. Kaibara K., Watanabe T., Miyakawa K. Characterization of critical processes in liquid- liquid phase separation of the elastomeric protein- water system: microscopic observations and light scattering measurements. Biopolymers, 2000, vol. 53, no. 5, pp. 369-379. doi:https://doi.org/10.1002/(SICI)1097-0282(20000415)53:5<369::AID-BIP2>3.0.CO;2-5
26. Lomakin A., Asherie N., Benedek G.B. Aeolotropic interactions of globular proteins. Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 17, pp. 9465-9458. doi:https://doi.org/10.1073/pnas.96.17.9465
27. Luo H., Leeb N., Wang X., Li Y., Schmelzer A., Hunter A.K., Pabst T., Wang W.K. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography. J. Chromatogr., A, 2017, vol. 1488, p. 57-67. doi:https://doi.org/10.1016/j.chroma.2017.01.067
28. Yaminsky I.V., Gvozdev N.V., Sil’nikova M.I., Rashkovich L.N. Atomic Force Microscopy Study of Lysozyme Crystallization. Crystallography Reports, 2002, vol. 47, suppl. 1, pp. S149-S158. ; DOI: https://doi.org/10.1134/1.1529969; EDN: https://elibrary.ru/LHDVGB
29. Gillespie C.M. Asthagiri D., Lenhoff A.M. Polymorphic protein crystal growth: in uence of hydration and ions in glucose isomerase. Cryst. Growth Des., 2014, vol. 14, no. 1, pp. 46-57. doi:https://doi.org/10.1021/cg401063b ; ; EDN: https://elibrary.ru/QWENVF
30. Von Hippel P.H., Schleich T. The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In: Timasheff, S.N. Fasman, G.D., Eds. Structure and Stability of Biological Macromolecules, N.Y.: Marcel-Dekker, 1969, pp. 417-574.
31. Record T.M., Anderson C.F., Lohman T.M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening and ion effects on water activity. Quart. Rev. Biophys., 1978, vol. 11, no. 2, pp. 103-178. doi:https://doi.org/10.1017/s003358350000202x ; DOI: https://doi.org/10.1017/S003358350000202X; EDN: https://elibrary.ru/XVBWKI
32. Collins K.D. Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization Biophys. Chem., 2006, vol. 119, no. 3, pp. 271-281. doi:https://doi.org/10.1016/j.bpc.2005.08.010
33. Uversky V.N., Li J., Fink A.L. Metal-triggered structural transformations, aggregation, and fibrillation of human synuclein. J. Biol. Chem., 2001, vol. 276, no. 47, pp. 44284-44296. doi:https://doi.org/10.1074/jbc.M105343200 ; ; EDN: https://elibrary.ru/LGYPRV
34. Senske M., Constantinescu-Aruxandei D., Havenith M., Herrmann C., Weingartner H., Ebbinghaus S. The temperature dependence of the Hofmeister series: thermodynamic fingerprints of cosolute-protein interactions. Phys. Chem. Chem. Phys., 2016, vol. 18, no. 43, pp. 29698-29708. doi:https://doi.org/10.1039/c6cp05080h ; ; EDN: https://elibrary.ru/YDAJNJ
35. Dudev T., Lim C.Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem. Rev., 2014, vol. 114, no. 1, pp. 538-556. doi:https://doi.org/10.1021/cr4004665 ; ; EDN: https://elibrary.ru/SRPGAN
36. Aldabaibeh N., Jones M.J., Myerson A.S., Ulrich J. The solubility of orthorhombic lysozyme crystals obtained at high pH. Cryst. Growth Des., 2009, vol. 9, no. 7, pp. 3313-3317. doi:https://doi.org/10.1021/cg900113e ; ; EDN: https://elibrary.ru/LWEXPJ
37. Veesler S., Ferte N., Costes M.-S., Czjzek M., Astier J-P. Temperature and ph effect on the polymorphism of aprotinin (BPTI) in sodium bromide solutions. Cryst. Growth Des., 2004, vol. 4, no. 6, pp. 1137-1141. doi:https://doi.org/10.1021/cg0498195
38. Wang Y., Annunziata O.Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition. J. Phys. Chem. B., 2006, vol. 111, no. 5, pp. 1222-1230. doi:https://doi.org/10.1021/jp065608u
39. Cin ar H., Fetahaj Z., Cinar S., Vernon R.M., Chan H.S., Winter R.H.A. Temperature, hydrostatic pressure, and osmolyte effects on liquid-liquid phase separation in protein condensates: physical chemistry and biological implications. Chem. Eur. J., 2019, vol. 25, pp. 13049-13069. doi:https://doi.org/10.1002/chem.201902210 ; ; EDN: https://elibrary.ru/BMBOWP
40. Shiryayev A., Pagan D.L., Gunton J.D., Rhen D.S., Saxena A., Lookman T. Role of solvent for globular proteins in solution. J. Chem. Phys., 2005. vol. 122, no. 23, p. 234911. doi:https://doi.org/10.1063/1.1931655 ; ; EDN: https://elibrary.ru/LTIBZF
41. Ma L., Cui Q. Temperature dependence of salt-protein association is sequence specific. Biochemistry, 2006, vol. 45, no. 48, pp. 14466-14472. doihttps://doi.org/10.1021/bi0613067
42. Atkins P.W. Physical Chemistry, Oxford, Melbourne, Tokyo: Oxford University Press, 1998, 997 p.
43. Bian L., Wu D., Hu W. Temperature-induced conformational transition of bovine serum albumin in neutral aqueous solution by reversed-phase liquid chromatography. Biomed. Chromatogr., 2014, vol. 28, no. 2, pp. 295-301. doi:https://doi.org/10.1002/bmc.3020 ; ; EDN: https://elibrary.ru/YCEWIU
44. Hollowell H.N., Younvanich S.S., McNevin S.L., Britt B.M. Thermodynamic analysis of the low- to physiological-temperature nondenaturational conformational change of bovine carbonic anhydrase. J. Biochem. Mol. Biol., 2007, vol. 40, no. 2, pp. 205-211. DOI:https://doi.org/10.5483/bmbrep.2007.40.2.205
45. Aznauryan M., Nettels D., Holla A., Hofmann H., Schuler B. Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J. Am. Chem. Soc., 2013, vol. 135, no. 38, pp. 14040-14043. doi:https://doi.org/10.1021/ja407009w ; ; EDN: https://elibrary.ru/YAXGSW
46. Matsarskaia O., Roosen-Runge F., Lotze G., Moeller J., Mariani A., Zhang F., Schreiber F. Tuning phase transitions of aqueous protein solutions by multivalent cations. Phys. Chem. Chem. Phys., 2018, vol. 20, no. 42, pp. 27214-27225. doi:https://doi.org/10.1039/c8cp05884a ; ; EDN: https://elibrary.ru/LBWSLV
47. Zhang F., Weggler S., Ziller M.J., Ianeselli L., Heck B.S., Hildebrandt A., Kohlbacher O., Skoda M.W.A., Jacobs R.M.J., Schreiber F. Universality of protein reentrant condensation in solution induced by multivalent metal ions. Proteins, 2010, vol. 78, no. 16, pp. 3450-3457. doi:https://doi.org/10.1002/prot.22852 ; ; EDN: https://elibrary.ru/NZXPUN
48. Luong T.Q., Kapoor S., Winter R. Pressure - A gateway to fundamental insights into protein solvation, dynamics, and function. ChemPhysChem, 2015, vol. 16, no. 17, pp. 3555-3571. doi:https://doi.org/10.1002/cphc.201500669 ; ; EDN: https://elibrary.ru/WTLDNL
49. Johari G.P. The Tammann phase boundary, exothermic disordering and the entropy contribution change on phase transformation. Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 2483-2487. doi:https://doi.org/10.1039/b100246p
50. Hawley S.A. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry, 1971, vol. 10, no. 13, pp. 2436-2442. doi:https://doi.org/10.1021/bi00789a002
51. Smeller L. Pressure temperature phase diagrams of biomolecules. Biochim. Biophys. Acta, 2002, vol. 1595, no. 1-2, pp. 11-29. doi:https://doi.org/10.1016/S0167-4838(01)00332-6 ; ; EDN: https://elibrary.ru/LQZBVZ
52. Scharnagl C., Reif M., Friedrich J. Stability of proteins: Temperature, pressure and the role of the solvent. Biochim. Biophys. Acta, 2005, vol. 1749, no. 2, pp. 187-213. doi:https://doi.org/10.1016/j.bbapap
53. Edsall J.T. The size, shape and hydration of of protein molecules. In: Neurath H., Bailey K., Eds. The proteins, vol. 1, part B. NY: Academic Press inc., 1953, pp. 549-726.
54. Kornblatt J.A., Kornblatt M.J. The effects of osmotic and hydrostatic pressures on macromolecular systems. Biochim. Biophys. Acta, 2002, vol. 1595, no. 1-2, pp. 30-47. doi:https://doi.org/10.1016/s0167-4838(01)00333-8 ; DOI: https://doi.org/10.1016/S0167-4838(01)00333-8; EDN: https://elibrary.ru/LSCYSV
55. Royer C., Winter R. Protein hydration and volumetric properties. Curr. Opin. Colloid Interface Sci., 2011, vol. 16, no. 6, pp. 568-571. doi:https://doi.org/10.1016/j.cocis.2011.04.008
56. Juarez J., Lopez S.G., Cambon A., Taboada P., Mosquera V. Influence of electrostatic interactions on the fibrillation process of human serum albumin. J. Phys. Chem. B, 2009, vol. 113, no. 30, pp. 10521-10529. doi:https://doi.org/10.1021/jp902224d ; ; EDN: https://elibrary.ru/MJAUSP
57. Miti T., Mulaj M., Schmidt J.D., Muschol M. Stable, metastable, and kinetically trapped amyloid aggregate phases. Biomacromolecules, 2015, vol. 16, no. 1, pp. 326-335. doihttps://doi.org/10.1021/bm501521r ; ; EDN: https://elibrary.ru/UUMZMF
58. Rescic J., Vlachy V., Jamnik A., Glatter O. Osmotic pressure, small-angle X-ray, and dynamic light scattering studies of human serum albumin in aqueous solutions. J. Colloid Interface Sci., 2001, vol. 239, no. 1, pp. 49-57. doi:https://doi.org/10.1006/jcis.2001.7545 ; ; EDN: https://elibrary.ru/XYLUVZ
59. McBride D.W., Rodgers V.G.J.Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective. Biophys. Chem., 2013, vol. 184, pp. 79-86. doi:https://doi.org/10.1016/j.bpc.2013.09.005 ; ; EDN: https://elibrary.ru/SSQARP
60. Medda L., Monduzzi M., Salis A. The molecular motion of bovine serum albumin under physiological conditions is ion specific. Chem.Commun. (Camb)., 2015, vol. 51, no. 30, pp. 6663-6666. doi:https://doi.org/10.1039/c5cc01538c.
61. Navarra G., Giacomazza D., Leone M., Librizzi F., Militello V., San Biagio P.L. Thermal aggregation and ion-induced cold-gelation of bovine serum albumin. Eur. Biophys. J., 2009, vol. 38, no. 4, pp. 437-446. doi:https://doi.org/10.1007/s00249-008-0389-6 ; ; EDN: https://elibrary.ru/DYIPBT
62. Fullerton G.D., Kanal K.M., Cameron I.L. Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration. Cell Biol.Int., 2006, vol. 30, no. 1, pp. 86-92. doi:https://doi.org/10.1016/j.cellbi.2005.11.001
63. Arabi S.H., Aghelnejad B., Schwieger C., Meister A., Kerth A., Hinderberger D. Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomater. Sci., 2018, vol. 6, no. 3, pp. 478-492. doi:https://doi.org/10.1039/c7bm00820a ; ; EDN: https://elibrary.ru/YHIBPN
64. Ikenoue T., Lee Y.-H., Kardos J., Saiki M., Yagi H., Kawata Y., Goto Y. Cold denaturation of a-synuclein amyloid fibrils. Angew. Chem.Int. Ed. Engl., 2014, vol. 53, no. 30, pp. 7799-7804. doi:https://doi.org/10.1002/anie.201403815
65. Adachi M., So M., Sakurai K., Kardos J., Goto Y. Supersaturation-limited and unlimited phase transitions compete to produce the pathway complexity in amyloid fibrillation. J. Biol. Chem., 2015, vol. 290, no. 29, pp. 18134-18145. doi:https://doi.org/10.1074/jbc.M115.648139 ; ; EDN: https://elibrary.ru/UUPJNR