Рассматриваются фазовые переходы типа жидкость-жидкость (L-L) в водно-солевых дисперсиях глобулярных белков в нативных состояниях (N*, N) в интервале температур между тепловой (D *) и холодной (D) денатурацией. Предполагается, что белковые интермедиаты (I, I *), возникающие в результате неравновесной (де)сорбции ионов в процессе переходов D↔N и D*↔N*, участвуют в фазовом переходе L-L с образованием кластеров и фибрилл в основной фазе белков N и N*. Таким образом они компенсируют свой избыточный химический потенциал (ChPot), обусловленный несбалансированным распределением адсорбированных ионов соли в структуре белка по сравнению с N-белком. Температурная модель поведения ChPots (∆µi) различных состояний белка: низкотемпературного i = D, N, I и высокотемпературного i = D*, N*, I*, переходы между ними, а также температурная зависимость ChPot растворителя (∆µ1) представлены в форме фазовых диаграмм. На этой основе обсуждаются взаимосвязь между значениями ∆µ1 и температурами L-L-переходов (верхней и нижней критическими температурами растворения), а также причины неидеального поведения осмотического давления в водно-солевых белковых дисперсиях.
фуллерен C60, кофеин, водный раствор, агрегация
1. Финкельштейн А.В., Птицын О.Б. Физика белка. М.: Университет, 2002, 376 с. @@Finkelstein A.V., Ptitsyn A.V. Protein Physics, Boston e.a.: Academic Press, 1st ed., 2002, 354 p. (In Russ.)
2. Sleutel M., van Driessche A.E.S. Role of clusters in nonclassical nucleation and growth of protein crystal. Proc. Natl. Acad. Sci. U.S.A, 2014, vol. 111, no.5, pp. E546-E553. doi:https://doi.org/10.1073/pnas.1309320111
3. Golub N., Meremyanin A., Markossian K., Eronina T., Chebotareva N., Asryants R., Mironets V., Kurganov B. Evidence for the formation of start aggregates as an initial stage of protein aggregation. FEBS Lett., 2007, vol. 581, no. 22, pp. 4223-4227. doi:https://doi.org/10.1016/j.febslet.2007.07.066 EDN: https://elibrary.ru/LKRQZP
4. Shin Y., Brangwynne C.P. Liquid phase condensation in cell physiology and disease. Science, 2017, vol. 357, no. 6357, p. eaaf4382. doi:https://doi.org/10.1126/science.aaf4382 EDN: https://elibrary.ru/YGNMBB
5. Yewdall N.A., Mason A.T., van Hest J.C.M. The hallmarks of living systems: towards creating artificial cells.Interface Focus, 2018, vol. 8, no. 5, p. 20180023. doi:https://doi.org/10.1098/rsfs.2018.0023 EDN: https://elibrary.ru/BUMHKG
6. Rozhkov S.P. Three-component system water-biopolymer-ions as a model of molecular mechanisms of osmotic homeostasis. Biophysics, 2001, vol. 46, no. 1, pp. 51-57.
7. Rozhkov S.P., Goryunov A.S. Phase states of water-protein(polypeptide)-salt system and reaction to external environment factors. Biophysics, 2014, vol. 59, no. 1, pp. 43-48. doi:https://doi.org/10.1134/S0006350914010175 EDN: https://elibrary.ru/SKRJKP
8. Fandrich M., Schmidt M., Grigorieff N. Recent progress in understanding Alzheimer’s b-amyloid structures. Trends Biochem. Sci., 2011, vol. 36, no. 6, pp. 338-345. doi:https://doi.org/10.1016/j.tibs.2011.02.002
9. Sivalingam V., Prasanna N.L., Sharma N., Prasad A., Patel B.K. Wild-type hen egg white lysozyme aggregation in vitro can form self-seeding amyloid conformational variants. Biophys. Chem., 2016, vol. 219, pp. 28-37. doi:https://doi.org/10.1016/j.bpc.2016.09.009 EDN: https://elibrary.ru/XTOFPN
10. Nicolai T., Durand D. Controlled food protein aggregation for new functionality. Curr. Opin. Colloid Interface Sci., 2013, vol. 18, no. 4, pp. 249-256. doi:https://doi.org/10.1016/j.cocis.2013.03.001
11. Vekilov P.G. Phase diagrams and kinetics of phase transitions in protein solutions. J. Phys: Condens. Matter, 2012, vol. 24, no. 19, p. 193101. doi:https://doi.org/10.1088/0953-8984/24/19/193101 EDN: https://elibrary.ru/XZGNYF
12. Dumetz A.C., Chockla A.M., Kaler E.W., Lenhoff A.M. Protein phase behavior in aqueous solutions: crystallization, liquid-liquid phase separation, gels, and aggregates. Biophys. J., 2008, vol. 94, no. 2, pp. 570-583. doi:https://doi.org/10.1529/biophysj.107.116152
13. Uversky V.N. Under-Folded Proteins: Conformational Ensembles and Their Roles in Protein Folding, Function, and Pathogenesis. Biopolymers, 2013, vol. 99, no. 11, pp. 870-887. DOI:https://doi.org/10.1002/bip.22298 EDN: https://elibrary.ru/RFPQNN
14. El-Baba T.J, Kim D., Rogers D.B., Khan F.A. Hedes D.A., Russell D.H., Clemmer D.E. Long lived intermediates in a cooperative two-state folding transitions. J.Phys.Chem.B, 2016, vol. 120, no. 47, pp. 12040-12046. doi:https://doi.org/10.1021/acs.jpcb.6b08932 EDN: https://elibrary.ru/YGSEOT
15. Feig M., Sugita Y. Reaching new levels of realism in modeling biological macromolecules in cellular environments. J. Mol. Graph. Model., 2013, vol. 45, pp. 144-156. doi:https://doi.org/10.1016/j.jmgm.2013.08.017 EDN: https://elibrary.ru/RISGOV
16. Hyman A.A., Weber C.A., Julicher F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol., 2014, vol. 30, pp. 39-58. doi:https://doi.org/10.1146/annurev-cellbio-100913-013325
17. Rozhkov S.P., Goryunov A.S. Stable, metastable, and supercritical phases in solutions of globular proteins between upper and lower denaturation temperatures. Biophysics, 2017, vol. 62, no. 4, pp. 539-546. doi:https://doi.org/10.1134/S0006350917040182 EDN: https://elibrary.ru/XOFJZL
18. Rozhkov S.P., Goryunov A.S. Thermodynamic study of protein phases formation and clustering in model water-protein-salt solutions. Biophysic. Chem., 2010, vol. 151, pp. 22-28. doi:https://doi.org/10.1016/j.bpc.2010.04.007 EDN: https://elibrary.ru/MXLNLJ
19. Grigsby J.J., Blanch H.W., Prausnitz J.M. Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH. Biophys.Chem., 3001, vol. 91, pp. 231. doi:https://doi.org/10.1016/s0301-4622(01)00173-9
20. Galkin O., Vekilov P.G. Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc. Natl. Acad. Sci. U.S.A, 2000, vol. 97, no. 12, pp. 6277-6281. doi:https://doi.org/10.1073/pnas.110000497
21. Vekilov P.G., Vorontsova M.A. Nucleation precursors in protein crystallization. Acta Crystallogr. F Struct. Biol.Commun., 2014, vol. 70, no. 3, pp. 271-282. doi:https://doi.org/10.1107/S2053230X14002386 EDN: https://elibrary.ru/USKGUF
22. Rozhkov S.P., Goryunov A.S. Dynamic protein clusterization in supercritical region of the phase diagram of water-protein-salt solutions. J. Supercrit. Fluid., 2014, vol. 95, pp. 68-74. doi:https://doi.org/10.1016/j.supflu.2014.07.028 EDN: https://elibrary.ru/SELBEA
23. Matsarskaia O., Braun M.K., Roosen-Runge F. Wolf M., Zhang F., Roth R., Schreiber F. Cation-Induced Hydration Effects Cause Lower Critical Solution Temperature Behavior in Protein Solutions. J. Phys. Chem. B, 2016, vol. 120, no. 31, pp. 7731-7736. doi:https://doi.org/10.1021/acs.jpcb.6b04506 EDN: https://elibrary.ru/WSGEVD
24. Han J., Herzfeld J.Interpretation of the osmotic behavior of sickle cell hemoglobin solutions: different interactions among monomers and polymers. Biopolymers, 1998, vol. 45, no. 4, pp. 299-306. doi:https://doi.org/10.1002/(SICI)1097-0282(19980405)45:4<299::AID-BIP4>3.0.CO;2-G
25. Kaibara K., Watanabe T., Miyakawa K. Characterization of critical processes in liquid- liquid phase separation of the elastomeric protein- water system: microscopic observations and light scattering measurements. Biopolymers, 2000, vol. 53, no. 5, pp. 369-379. doi:https://doi.org/10.1002/(SICI)1097-0282(20000415)53:5<369::AID-BIP2>3.0.CO;2-5
26. Lomakin A., Asherie N., Benedek G.B. Aeolotropic interactions of globular proteins. Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 17, pp. 9465-9458. doi:https://doi.org/10.1073/pnas.96.17.9465
27. Luo H., Leeb N., Wang X., Li Y., Schmelzer A., Hunter A.K., Pabst T., Wang W.K. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography. J. Chromatogr., A, 2017, vol. 1488, p. 57-67. doi:https://doi.org/10.1016/j.chroma.2017.01.067
28. Yaminsky I.V., Gvozdev N.V., Sil’nikova M.I., Rashkovich L.N. Atomic Force Microscopy Study of Lysozyme Crystallization. Crystallography Reports, 2002, vol. 47, suppl. 1, pp. S149-S158. DOI: https://doi.org/10.1134/1.1529969; EDN: https://elibrary.ru/LHDVGB
29. Gillespie C.M. Asthagiri D., Lenhoff A.M. Polymorphic protein crystal growth: in uence of hydration and ions in glucose isomerase. Cryst. Growth Des., 2014, vol. 14, no. 1, pp. 46-57. doi:https://doi.org/10.1021/cg401063b EDN: https://elibrary.ru/QWENVF
30. Von Hippel P.H., Schleich T. The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In: Timasheff, S.N. Fasman, G.D., Eds. Structure and Stability of Biological Macromolecules, N.Y.: Marcel-Dekker, 1969, pp. 417-574.
31. Record T.M., Anderson C.F., Lohman T.M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening and ion effects on water activity. Quart. Rev. Biophys., 1978, vol. 11, no. 2, pp. 103-178. doi:https://doi.org/10.1017/s003358350000202x EDN: https://elibrary.ru/XVBWKI
32. Collins K.D. Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization Biophys. Chem., 2006, vol. 119, no. 3, pp. 271-281. doi:https://doi.org/10.1016/j.bpc.2005.08.010
33. Uversky V.N., Li J., Fink A.L. Metal-triggered structural transformations, aggregation, and fibrillation of human synuclein. J. Biol. Chem., 2001, vol. 276, no. 47, pp. 44284-44296. doi:https://doi.org/10.1074/jbc.M105343200 EDN: https://elibrary.ru/LGYPRV
34. Senske M., Constantinescu-Aruxandei D., Havenith M., Herrmann C., Weingartner H., Ebbinghaus S. The temperature dependence of the Hofmeister series: thermodynamic fingerprints of cosolute-protein interactions. Phys. Chem. Chem. Phys., 2016, vol. 18, no. 43, pp. 29698-29708. doi:https://doi.org/10.1039/c6cp05080h EDN: https://elibrary.ru/YDAJNJ
35. Dudev T., Lim C.Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins. Chem. Rev., 2014, vol. 114, no. 1, pp. 538-556. doi:https://doi.org/10.1021/cr4004665 EDN: https://elibrary.ru/SRPGAN
36. Aldabaibeh N., Jones M.J., Myerson A.S., Ulrich J. The solubility of orthorhombic lysozyme crystals obtained at high pH. Cryst. Growth Des., 2009, vol. 9, no. 7, pp. 3313-3317. doi:https://doi.org/10.1021/cg900113e EDN: https://elibrary.ru/LWEXPJ
37. Veesler S., Ferte N., Costes M.-S., Czjzek M., Astier J-P. Temperature and ph effect on the polymorphism of aprotinin (BPTI) in sodium bromide solutions. Cryst. Growth Des., 2004, vol. 4, no. 6, pp. 1137-1141. doi:https://doi.org/10.1021/cg0498195
38. Wang Y., Annunziata O.Comparison between protein-polyethylene glycol (PEG) interactions and the effect of PEG on protein-protein interactions using the liquid-liquid phase transition. J. Phys. Chem. B., 2006, vol. 111, no. 5, pp. 1222-1230. doi:https://doi.org/10.1021/jp065608u
39. Cin ar H., Fetahaj Z., Cinar S., Vernon R.M., Chan H.S., Winter R.H.A. Temperature, hydrostatic pressure, and osmolyte effects on liquid-liquid phase separation in protein condensates: physical chemistry and biological implications. Chem. Eur. J., 2019, vol. 25, pp. 13049-13069. doi:https://doi.org/10.1002/chem.201902210 EDN: https://elibrary.ru/BMBOWP
40. Shiryayev A., Pagan D.L., Gunton J.D., Rhen D.S., Saxena A., Lookman T. Role of solvent for globular proteins in solution. J. Chem. Phys., 2005. vol. 122, no. 23, p. 234911. doi:https://doi.org/10.1063/1.1931655 EDN: https://elibrary.ru/LTIBZF
41. Ma L., Cui Q. Temperature dependence of salt-protein association is sequence specific. Biochemistry, 2006, vol. 45, no. 48, pp. 14466-14472. doihttps://doi.org/10.1021/bi0613067
42. Atkins P.W. Physical Chemistry, Oxford, Melbourne, Tokyo: Oxford University Press, 1998, 997 p.
43. Bian L., Wu D., Hu W. Temperature-induced conformational transition of bovine serum albumin in neutral aqueous solution by reversed-phase liquid chromatography. Biomed. Chromatogr., 2014, vol. 28, no. 2, pp. 295-301. doi:https://doi.org/10.1002/bmc.3020 EDN: https://elibrary.ru/YCEWIU
44. Hollowell H.N., Younvanich S.S., McNevin S.L., Britt B.M. Thermodynamic analysis of the low- to physiological-temperature nondenaturational conformational change of bovine carbonic anhydrase. J. Biochem. Mol. Biol., 2007, vol. 40, no. 2, pp. 205-211. DOI:https://doi.org/10.5483/bmbrep.2007.40.2.205
45. Aznauryan M., Nettels D., Holla A., Hofmann H., Schuler B. Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J. Am. Chem. Soc., 2013, vol. 135, no. 38, pp. 14040-14043. doi:https://doi.org/10.1021/ja407009w EDN: https://elibrary.ru/YAXGSW
46. Matsarskaia O., Roosen-Runge F., Lotze G., Moeller J., Mariani A., Zhang F., Schreiber F. Tuning phase transitions of aqueous protein solutions by multivalent cations. Phys. Chem. Chem. Phys., 2018, vol. 20, no. 42, pp. 27214-27225. doi:https://doi.org/10.1039/c8cp05884a EDN: https://elibrary.ru/LBWSLV
47. Zhang F., Weggler S., Ziller M.J., Ianeselli L., Heck B.S., Hildebrandt A., Kohlbacher O., Skoda M.W.A., Jacobs R.M.J., Schreiber F. Universality of protein reentrant condensation in solution induced by multivalent metal ions. Proteins, 2010, vol. 78, no. 16, pp. 3450-3457. doi:https://doi.org/10.1002/prot.22852 EDN: https://elibrary.ru/NZXPUN
48. Luong T.Q., Kapoor S., Winter R. Pressure - A gateway to fundamental insights into protein solvation, dynamics, and function. ChemPhysChem, 2015, vol. 16, no. 17, pp. 3555-3571. doi:https://doi.org/10.1002/cphc.201500669 EDN: https://elibrary.ru/WTLDNL
49. Johari G.P. The Tammann phase boundary, exothermic disordering and the entropy contribution change on phase transformation. Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 2483-2487. doi:https://doi.org/10.1039/b100246p
50. Hawley S.A. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry, 1971, vol. 10, no. 13, pp. 2436-2442. doi:https://doi.org/10.1021/bi00789a002
51. Smeller L. Pressure temperature phase diagrams of biomolecules. Biochim. Biophys. Acta, 2002, vol. 1595, no. 1-2, pp. 11-29. doi:https://doi.org/10.1016/S0167-4838(01)00332-6 EDN: https://elibrary.ru/LQZBVZ
52. Scharnagl C., Reif M., Friedrich J. Stability of proteins: Temperature, pressure and the role of the solvent. Biochim. Biophys. Acta, 2005, vol. 1749, no. 2, pp. 187-213. doi:https://doi.org/10.1016/j.bbapap
53. Edsall J.T. The size, shape and hydration of of protein molecules. In: Neurath H., Bailey K., Eds. The proteins, vol. 1, part B. NY: Academic Press inc., 1953, pp. 549-726.
54. Kornblatt J.A., Kornblatt M.J. The effects of osmotic and hydrostatic pressures on macromolecular systems. Biochim. Biophys. Acta, 2002, vol. 1595, no. 1-2, pp. 30-47. doi:https://doi.org/10.1016/s0167-4838(01)00333-8 EDN: https://elibrary.ru/LSCYSV
55. Royer C., Winter R. Protein hydration and volumetric properties. Curr. Opin. Colloid Interface Sci., 2011, vol. 16, no. 6, pp. 568-571. doi:https://doi.org/10.1016/j.cocis.2011.04.008
56. Juarez J., Lopez S.G., Cambon A., Taboada P., Mosquera V. Influence of electrostatic interactions on the fibrillation process of human serum albumin. J. Phys. Chem. B, 2009, vol. 113, no. 30, pp. 10521-10529. doi:https://doi.org/10.1021/jp902224d EDN: https://elibrary.ru/MJAUSP
57. Miti T., Mulaj M., Schmidt J.D., Muschol M. Stable, metastable, and kinetically trapped amyloid aggregate phases. Biomacromolecules, 2015, vol. 16, no. 1, pp. 326-335. doihttps://doi.org/10.1021/bm501521r EDN: https://elibrary.ru/UUMZMF
58. Rescic J., Vlachy V., Jamnik A., Glatter O. Osmotic pressure, small-angle X-ray, and dynamic light scattering studies of human serum albumin in aqueous solutions. J. Colloid Interface Sci., 2001, vol. 239, no. 1, pp. 49-57. doi:https://doi.org/10.1006/jcis.2001.7545 EDN: https://elibrary.ru/XYLUVZ
59. McBride D.W., Rodgers V.G.J.Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective. Biophys. Chem., 2013, vol. 184, pp. 79-86. doi:https://doi.org/10.1016/j.bpc.2013.09.005 EDN: https://elibrary.ru/SSQARP
60. Medda L., Monduzzi M., Salis A. The molecular motion of bovine serum albumin under physiological conditions is ion specific. Chem.Commun. (Camb)., 2015, vol. 51, no. 30, pp. 6663-6666. doi:https://doi.org/10.1039/c5cc01538c.
61. Navarra G., Giacomazza D., Leone M., Librizzi F., Militello V., San Biagio P.L. Thermal aggregation and ion-induced cold-gelation of bovine serum albumin. Eur. Biophys. J., 2009, vol. 38, no. 4, pp. 437-446. doi:https://doi.org/10.1007/s00249-008-0389-6 EDN: https://elibrary.ru/DYIPBT
62. Fullerton G.D., Kanal K.M., Cameron I.L. Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration. Cell Biol.Int., 2006, vol. 30, no. 1, pp. 86-92. doi:https://doi.org/10.1016/j.cellbi.2005.11.001
63. Arabi S.H., Aghelnejad B., Schwieger C., Meister A., Kerth A., Hinderberger D. Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomater. Sci., 2018, vol. 6, no. 3, pp. 478-492. doi:https://doi.org/10.1039/c7bm00820a EDN: https://elibrary.ru/YHIBPN
64. Ikenoue T., Lee Y.-H., Kardos J., Saiki M., Yagi H., Kawata Y., Goto Y. Cold denaturation of a-synuclein amyloid fibrils. Angew. Chem.Int. Ed. Engl., 2014, vol. 53, no. 30, pp. 7799-7804. doi:https://doi.org/10.1002/anie.201403815
65. Adachi M., So M., Sakurai K., Kardos J., Goto Y. Supersaturation-limited and unlimited phase transitions compete to produce the pathway complexity in amyloid fibrillation. J. Biol. Chem., 2015, vol. 290, no. 29, pp. 18134-18145. doi:https://doi.org/10.1074/jbc.M115.648139 EDN: https://elibrary.ru/UUPJNR