This article is devoted to the study of electrical transport characteristics of single-layer germanene in an external constant electric field. The small forbidden gap of germanene can be controlled by the electric field, adsorption of various atoms, deformation, and interaction with the substrate. Using the method of the semiclassical approximation, an analytical relation is obtained for the specific conductivity of single-layer germanene. The evolution of the electron system of germanene sheets was described using the kinetic Boltzmann equation in the framework of the semiclassical relaxation time approximation. A two-dimensional hexagonal layer was chosen as a geometric model of a germanene nanoribbon. The mathematical model of the electronic structure of undeformed germanene nanoribbons is based on their geometric structure and the band structure of the hexagonal layer. The band structure of nanoribbons is used within the framework of the tight binding method in the Hückel and nearest neighbors approximations. The dependences of the specific conductivity of germanene layers of different chirality on the strength of the external electric field are investigated.
germanene, electron transport, electrical conductivity, nanostructures, semiclassical approximation
1. Lozovik Yu.E., Merkulova S.P., Sokolik A.A. Kollektivnye elektronnye yavleniya v grafene. Uspehi fizicheskih nauk, 2008, t. 178, № 7, s. 758-776. @@Lozovik Yu.E., Merkulova S.P., Sokolik A.A., Collective electron phenomena in graphene. Phys. Usp., 2008, vol. 51, no. 7, 727-744. (In Russ.)
2. Chernozatonskiy L.A., Sorokin P.B., Artyuh A.A. Novye nanostruktury na osnove grafena: fiziko-himicheskie svoystva i prilozheniya. Uspehi himii, 2014, t. 83, vyp. 3, c. 251-279. @@Chernozatonskii L.A., Sorokin P.B., Artukh A.A. New nanostructures based on graphene: physical and chemical properties and applications. Russ. Chem. Rev., 2014, vol. 83, pp. 251-279. (In Russ.)
3. Lemme M.C. Current status of graphene transistors. Solid State Phenomena, 2009, vol. 156, pp. 499.
4. Davila M.E, Xian L., Cahangirov S., Rubio A., Le Lay G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New Journal of Physics, 2014, vol. 16, no. 9 p. 095002. doi:https://doi.org/10.1088/1367-2630/16/9/095002
5. Kyozaburo T., Kenji S. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Physical Review B, 1994, vol. 50, no. 20, pp. 14916-14922. DOI:https://doi.org/10.1103/PhysRevB.50.14916
6. Cahangirov S., Topsakal M., Aktürk E., Şahin H., Ciraci S. Two- and one-dimensional honeycomb structures of silicon and germanium. Physical Review Letters, 2009, vol. 102, no. 23, p. 236804. doi:https://doi.org/10.1103/PhysRevLett.102.236804
7. Lebe`gue S., Bjoerkman T., Klintenberg M., Nieminen R.M., Eriksson O. Two-Dimensional Materials from Data Filtering and Ab Initio Calculations. Physical Review X, 2013, vol. 3, p. 031002.
8. Mortazavi B., Rahaman O., Makaremi M., Dianat A., Cunibertic G., Rabczuk T. First-principles investigation of mechanical properties of silicene, germanene and stanine. Physica E, 2017, vol. 87, pp. 228-232.
9. Kazemlou V. Phirouznia A. Influence of compression strains on photon absorption of silicene and germanene. Superlattices and Microstructures, 2019, vol. 128, pp. 23-29.
10. Landau L.D., Lifshic E.M. Fizicheskaya kinetika. Fiz.-mat. lit., 1979, 528 c. @@Landau L.D., Lifshits E.M. Physical kinetics. Phys.-mat. lit., 1979, 528 p. (In Russ.)
11. Dykman I.M., Tomchuk P.M. Yavleniya perenosa i fluktuacii v poluprovodnikah. Nauk. dumka, Kiev, 1981, 320 c. @@Dykman I.M., Tomchuk P.M. Transport phenomena and fluctuations in semiconductors. Science. dumka, Kiev, 1981, 320 p. (In Russ.)