Abstract and keywords
Abstract (English):
A significant increase in the intracellular concentration of lithium was revealed after exposure of erythrocytes to 6-10 mM Li2SO4 for 3 hours. The accumulation of lithium ions in erythrocytes is accompanied by inhibition of their esterase activity, a slight decrease in the level of reactive oxygen species and an increase in the permeability of the cell membrane. It has been shown that the effect of lithium salts in toxic concentrations on human erythrocytes in vitro slightly reduces the level of reactive oxygen species, but leads to a modification of the physicochemical state of membrane-bound proteins and lipids. The results obtained are the basis for creating a cell test system for assessing the toxicity of lithium.

Keywords:
erythrocytes, lithium, trace elements, reactive oxygen species, lipid microviscosity, membrane-bound proteins
Text
Text (PDF): Read Download
References

1. Chang C.M., Wu C.S., Huang Y.W., Chau Y.L., Tsai H.J. Utilization of pychopharmacological Treatment Among Patients With Newly Diagnosed Bipolar Disorder From 2001 to 2010. J Clin Psychopharmacol, 2016, vol. 36, no. 1, pp. 32-44.

2. Birch N.J. Lithium and the cell: pharmacology and biochemistry. New York: Academic Press, 2012.

3. Ruiz P. Kaplan and Sadock’s Comprehensive Textbook of Psychiatry. Cambridge: Cambridge University Press, 2017, pp. 418.

4. Ostrenko K.V., Gromova O.A., Sardaryan I.S. Demidov V.I. Effektivnost' askorbata litiya na modeli hronicheskoy alkogol'noy intoksikacii, Farmakinetika i farmakodinamika, 2017, № 1, s. 11-21. @@Ostrenko K.V., Gromova O.A., Sardaryan I.S. Demidov V.I. The effectiveness of lithium ascorbate on the model of chronic alcohol intoxication, Pharmacinetics and pharmacodynamics, 2017, no. 1, pp.11-21. (In Russ.)

5. McNamara R.K., Jandacek R., Tso P., Blom T.J., Welge J.A., Strawn J.R., Adler C.M., Delbello M.P., Strakowski S.M. First-episode bipolar disorder is associated with erythrocyte membrane docosahexaenoic acid deficits: Dissociation from clinical response to lithium or quetiapine. Psychiatry Res., 2015, vol. 230, no. 2, pp. 447-453.

6. Torshin I.Yu., Sardaryan I.S., Gromova O.A., Rastashanskiy V.A., Fedotova L.E. Hemoreaktomnoe modelirovanie askorbata litiya. Farmakinetika i farmakodinamika, 2016, no. 3, c. 47-58. @@Torshin I.Yu., Sardaryan I.S., Gromova O.A., Rastashansky V.A., Fedotova L.E. Chemoreactom modeling of lithium ascorbate. Pharmacinetics and pharmacodynamics, 2016, no. 3, pp. 47-58 (In Russ.)

7. Luk'yanenko L.M., Skorobogatova A.S., Logackaya M.A., Kut'ko A.G., Kas'ko L.P., Slobozhanina E.I. Mikroelementy v eritrocitah beremennyh zhenschin s riskom razvitiya metabolicheskogo sindroma. Sbornik materialov X-ymezhdunarodnoy konferencii "Molekulyarnye, membrannye i kletochnye osnovy funkcionirovaniya biosistem", Minsk, 2012, № 2, c. 179-182. @@Lukyanenko L.M., Skorobogatova A.S., Logatskaya M.A., Kutko A.G., Kasko L.P., Slobozhanina E.I. Trace elements in erythrocytes of pregnant women at risk of developing metabolic syndrome. Collection of materials of the X-th international conference "Molecular, membrane and cellular bases of the functioning of biosystems" Minsk, 2012, no. 2, pp. 179-182. (In Russ.)

8. Jakobsson E., Arguello-Miranda O., Chiu S.W., Fazal ZKruczek J., Nunez-Corrales S., Pandit S., Pritchet L. Towards a unifedunderstanding of lithium action in basic biology and its signifcance for applied. Biology. J. Membr. Biol., 2017, vol. 250, no. 6, pp. 587-604. DOI:https://doi.org/10.1007/s00232-017-9998-2

9. Malhi G.S., Tanious M., Das P., Coulston C.M., Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS drugs, 2013, vol. 27, no. 2, pp. 135-153. DOI:https://doi.org/10.1007/s40263-013-0039-0

10. Lee Y., Kim S.M., Jung E.H., Park J., Lee J.W., Han I.O. Lithium chloride promotes lipid accumulation through increased reactive oxygen species generation. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids., 2019, vol. 1865, no. 2, pp. 1-27.

11. Fernandes M.S., Barbisan F., Azzolin V.F., Schmidt do Prado-Lima P.A., Teixeira C.F., Cruz Jung I.E. da. Lithium is able to minimize olanzapine oxidative-inflammatory induction on macrophage cells. PLoS One, 2019, vol. 14, no. 1, pp. 1-16.

12. Aminzadeh A., Dehpour A., Safa M., Mirzamohammadi S. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells: involvements of ROS, JNK and P38 MAPKs, and apoptotic mitochondria pathway. Cell Mol. Neurobiol., 2014, vol. 34, no. 8, pp.1143-1150.

13. Wu C.P., Klokouzas A., Hladky S.B., Ambudkar S.V., Barrand M.A.Interactions of mefloquine with ABC proteins, MRP1 (ABCC1) and MRP4 (ABCC4) that are present in human red cell membranes. Biochem. Pharmacol., 2005, vol. 70, no. 4, pp. 500-510.

14. Bratosin D., Tcacenco L., Sidoroff M., Cotoraci C., Slomianny C., Estaquier J., Montreuil. Active caspases-8 and caspases-3 in circulating human erythrocytes purified on immobilized annexin-V: a cytometric demonstration. Cytometry A., 2009, vol. 75A, pp. 236-244.

15. Nicolay J.P., Gatz S., Lang F., Lang U.E. Lithium-induced suicidal erythrocyte death. J. Psychopharmacol., 2010, vol. 24, no. 10, pp. 1533-1539.

16. Plotnikov E.Yu., Silachev D.N., Zorova L.D., Pevzner I.B., Yankauskas S.S., Zorov S.D. Babenko V.A. Skulachev M.V., Zorov D.B. Soli litiya prostye, no magicheskie (obzor). Biohimiya, 2014, t. 9, № 8, c. 932-943. @@Plotnikov E.Yu., Silachev D.N., Zorova L.D., Pevzner I.B., Yankauskas S.S., Zorov S.D., Babenko V.A., Skulachev M.V., Zorov D.B. Lithium salts are simple but magical (review). Biochemistry, 2014, vol. 9, no. 8, pp. 932-943 (In Russ.)

17. Hillert M.H., Imran I., Zimmermann M., Lau H., Weinfurter S., Klein J. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. J. Neurochem., 2014, vol. 131, no. 1, pp. 42-52. doi:https://doi.org/10.1111/jnc.12787

18. Vlachos D.G., Schulpis K.H., Antsaklis A., Mesogitis S., Biliatis I., Tsakiris S. Erythrocyte membrane AchE, Na, K-ATPase and Mg-ATPase activities in mothers and their premature neonates in relation to the mode of delivery. Scand. J. Clin. Lab. Invest., 2010, vol. 70, no. 8, pp. 568-574. doi:https://doi.org/10.3109/00365513.2010.527365

19. Topunov A.F., Kosmochevskaya O.V. Mnozhestvennye funkcional'nye formy gemoglobina v organizme cheloveka: sovremennyy vzglyad i prakticheskoe ispol'zovanie. Biomika, 2018, t. 10, № 3, c. 251-267. @@Topunov A.F. Kosmochevskaya O.V. Multiple functional forms of hemoglobin in the human body: modern view and practical use. Biomics, 2018, vol. 10, no. 3, pp. 251-267. (In Russ.)

20. Gay H.C. Amaral A.P. Acquired methemoglobinemia associated with topical lidocaine administration: a case report. Drug Safety - Case Reports, 2018, vol. 5, № 1, pp. 15-20. doi:https://doi.org/10.1007/s40800-018-0081-4

21. Mokrushnikov P.V. Metodika i rezul'taty izmereniya mikrovyazkosti biomembran. Tr. Novosib. gos. arhitekt.-stroit. un-ta (Cibistrin), 2018, t. 2, № 1, c. 17-24. @@Mokrushnikov P.V. Methods and results of measuring the microviscosity of biomembranes. Tr. Novosib. state architect-build un-that (Sibistrin), 2018, vol. 2, no. 1, pp. 17-24. (In Russ.)

22. Li H., Lykotrafitis G. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophys. J., 2014, vol. 107, no. 3, pp. 642-653. doi:https://doi.org/10.1016/j.bpj.2014.06.031

23. Ballweg S., Ernst R. Control of membrane fluidity: the OLE pathway in focus. Biol. Chem., 2017, vol. 398, no. 2, pp. 215-228. doi:https://doi.org/10.1515/hsz-2016-0277

24. Bagatolli L., Mely Y., Duportail G. Laurdan fluorescence properties in membranes: a journey from the fluorometer to the microscope. Fluorescent Methods to Study Biological Membranes, Heidelberg, 2012, pp. 3-35.

25. Bekker R.A., Bykov Yu.V. Lithium preparations in psychiatty, addiction medicine and neurology. Part II. Biochemical mechanisms of its action. Acta Biomed. Scientifica, 2019, vol. 4, no. 2, pp. 82-102. doi: 10.29413/ ABS.2019-4.2.13


Login or Create
* Forgot password?