ASSIGNMENT OF FUNCTIONS TO OPSINS OF TRICHOPLAX ADHAERENS AND TRICHOPLAX SP. H2
Abstract and keywords
Abstract (English):
The genome of Trichoplax sp. H2 has 10 genes encoding opsin, of which 7 ones are annotated as color-sensitive opsins, from green to ultraviolet. In turn, 10 opsin-like genes were also found in the genome of Trichoplax adhaerens . Full amino acid sequences were inferred for a half of these proteins. Due to the opsins of Trichoplax adhaerens haplotype H1 have been incompletely characterized, it was of special interest to investigate those opsins. For this purpose, multiple sequence alignments of the all 20 opsins from both trichoplax strains were performed, and guide trees were constructed. Structural models of the 20 proteins were created using homologous comparison and then the docking of retinal chromophore was performed. Based on these calculations, 3 complete hypothetical proteins, such as EDV19328.1 of length 465 aa, EDV22726.1 of length 365 aa, and EDV22897.1 of length 319 aa from Trichoplax adhaerens were assigned a blue light sensitivity function. With less chance, the blue light sensitivity could be assigned to 4 incomplete homologous proteins, such as EDV22727.1 (287 aa), EDV19349.1 (188 aa), EDV19891.1 (161 aa), and EDV18601.1 (137 aa) from strain H1. The being of multiple opsin genes in the genomes of haplotypes H1 and H2 suggests that Placozoa are capable of distinguishing shades of blue, and this possibly allows them to navigate in the seawater.

Keywords:
annotation, biological functions, homology, structural modeling, opsins, Placozoa
Text
Publication text (PDF): Read Download
References

1. Terakita A. The opsins. Genome Biol., 2005, vol. 6, no. 3, 213 p.

2. Schierwater B., Eitel M., Jakob W., Osigus H.J., Hadrys H., Dellaporta S.L., Kolokotronis S.O., Desalle R. Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis. PLoS Biol., 2009, vol. 7, no. 1, p. e20.

3. Feuda R., Hamilton S.C., McInerney J.O., Pisani D. Metazoan opsin evolution reveals a simple route to animal vision. Proc Natl Acad Sci, USA, 2012, vol. 109, no. 46, pp. 18868-72.

4. Erwin D.H. Early metazoan life: divergence, environment and ecology. Philos Trans R Soc Lond B Biol Sci., 2015, vol. 370, no. 1684, p. 20150036.

5. Paps J., Holland P.W.H. Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat Commun., 2018, vol. 9, no. 1, p. 1730.

6. Srivastava M., Begovic E., Chapman J., Putnam N.H., Hellsten U., Kawashima T., Kuo A., Mitros T., Salamov A., Carpenter M.L, Signorovitch A.Y., Moreno M.A., Kamm K., Grimwood J., Schmutz J., Shapiro H., Grigoriev I.V., Buss L.W., Schierwater B., Dellaporta S.L., Rokhsar D.S. The Trichoplax genome and the nature of placozoans. Nature, 2008, vol. 454, no. 7207, pp. 955-960.

7. Kamm K., Osigus H.J., Stadler P.F., DeSalle R., Schierwater B. Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Sci Rep., 2018, vol. 8, no. 1, p. 11168.

8. Kuznetsov A.V., Halaimova A.V., Ufimtseva M.A., Chelebieva E.S. Blocking a chemical communication between Trichoplax organisms leads to their disorderly movement.International Journal of Parallel, Emergent and Distributed Systems, 2020, vol. 35, no. 4, pp. 473-482.

9. Fernald R.D. Casting a genetic light on the evolution of eyes. Science, 2006, vol. 313, no. 5795, pp. 1914-1918.

10. Oakley T.H., Plachetzki D.C. The Evolution of Opsins. Encyclopedia of the Eye, 2010, pp 82-88.

11. Porter M.L., Blasic J.R., Bok M.J., Cameron E.G., Pringle T., Cronin T.W., Robinson P.R. Shedding new light on opsin evolution. Proc Biol Sci., 2012, vol. 279, no. 1726, pp. 3-14.

12. Leung N.Y., Montell C. Unconventional roles of opsins. Annu Rev Cell Dev Biol., 2017, vol. 33, pp. 241-264.

13. Leung N.Y., Thakur D.P., Gurav A.S., Kim S.H., Di Pizio A., Niv M.Y., Montell C. Functions of Opsins in Drosophila Taste. Curr Biol., 2020, vol. 30, no. 8, pp. 1367-1379.

14. Henze M.J., Dannenhauer K., Kohler M., Labhart T., Gesemann M. Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol., 2012, vol. 12, p. 163.

15. Hodonov A.A., Belikov N.E., Lukin A.Yu., Petrovskaya L.E., Chupin V.V., Demina O.V. Issledovanie selektivnosti okruzheniya hromofor-svyazyvayuschego sayta molekuly bakteriorodopsina s pomosch'yu analogov retinoidov. Aktual'nye voprosy biologicheskoy fiziki i himii, 2020, t. 5, № 1, s. 91-100. @@Khodonov A.A., Belikov N.E., Lukin A.Yu., Petrovskaya L.E., Chupin V.V., Demina O.V. Investigation of the selectivity of the environment of the chromophore-binding site of the bacteriorhodopsin molecule using retinoid analogs. Topical issues of biological physics and chemistry, 2020, vol. 5, no. 1, pp. 91-100. (In Russ.)

16. Wanko M., Hoffmann M., Frauenheim T., Elstner M.J.Computational photochemistry of retinal proteins.Comput Aided Mol Des., 2006, vol. 20, no. (7-8), pp. 511-8.

17. Rupenyan A., van Stokkum I.H., Arents J.C., van Grondelle R., Hellingwerf K., Groot M.L. Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy. Biophys J., 2008, vol. 94, no. 10, pp. 4020-4030.

18. Scheerer P., Park J.H., Hildebrand P.W., Kim Y.J., Krauss N, Choe H.W., Hofmann K.P., Ernst O.P. Crystal structure of opsin in its G-protein-interacting conformation. Nature, 2008, vol. 455, no. 7212, pp. 497-502.

19. Wang T., Duan Y. Retinal release from opsin in molecular dynamics simulations. J Mol Recognit., 2011, vol. 24, no. 2, pp. 350-8.

20. Li Y.T., Tian Y., Tian H., Tu T., Gou G.Y., Wang Q., Qiao Y.C, Yang Y., Ren T.L. A Review on Bacteriorhodopsin-Based Bioelectronic Devices. Sensors (Basel), 2018, vol. 18, no. 5, p. 1368.

21. Simon C.J., Sahel J.A., Duebel J., Herlitze S., Dalkara D. Opsins for vision restoration. Biochem Biophys Res Commun., 2020, vol. 527, no. 2, pp. 325-330.

22. Xu X., Mee T., Jia X. New era of optogenetics: from the central to peripheral nervous system. Crit Rev Biochem Mol Biol., 2020, vol. 55, no. 1, pp. 1-16.

23. Berglund K., Stern M.A., Gross R.E. Bioluminescence-Optogenetics. Berglund K, Stern MA, Gross RE. Adv Exp Med Biol., 2021, vol. 1293, pp. 281-293.

24. Nelesen S., Liu K., Zhao D., Linder C.R., Warnow T. The effect of the guide tree on multiple sequence alignments and subsequent phylogenetic analyses. Pac Symp Biocomput., 2008, pp. 25-36.

25. Sievers F., Hughes G.M., Higgins D.G. Systematic exploration of guide-tree topology effects for small protein alignments. BMC Bioinformatics, 2014, vol. 15, no. 1, p. 338.

26. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc., 2015, vol. 10, no. 6, pp. 845-58.

27. Bitencourt-Ferreira G., de Azevedo W.F. Jr. Docking with SwissDock. Methods Mol Biol., 2019, vol. 2053, pp. 189-202.

28. Stothard P. The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques, 2000, vol. 28, pp. 1102-1104.

29. Madeira F., Park Y.M., Lee J., Buso N., Gur T., Madhusoodanan N., Basutkar P., Tivey A.R.N., Potter S.C., Finn R.D., Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 2019, vol. 47, (W1), pp. W636-W641.

30. Sayle R., Milner-White E.J. RasMol: Biomolecular graphics for all. Trends Biochem Sci., 1995, vol. 20, no. 9, p. 374.

31. Kapcov V.A., Deynego V.N., Kozyrickiy D.V. Rgb-taksis trichoplax (placozoa), kak novyy metod gigienicheskih issledovaniy. Medicina truda i ekologiya cheloveka, 2021, t. 1, s.6-22. @@Kaptsov V.A., Deinogo V.N., Kozyritsky D.V. Rgb taxis trichoplax (placozoa) as a new method of hygienic research. Occupational medicine and human ecology, 2021, vol. 1, pp. 6-22. (In Russ.)

32. Mamontov A.A., Havronyuk I.S., Rybakova K.A., Kuznecov A.V. Povedenie trihoplaksa v zavisimosti ot deystviya sveta na opsiny v sootvetstvii s glubinoy obitaniya zhivotnogo: analiz i model'nye opyty. Materialy XVI Mezhdunarodnoy nauchnoy konferencii «Aktual'nye voprosy biologicheskoy fiziki i himii. BFFH-2021», Sevastopol', 2021, s. 217-218. @@Mamontov A.A., Khavronyuk I.S., Rybakova K.A., Kuznetsov A.V. Trichoplax behavior depending on the effect of light on opsins in accordance with the depth of the animal's habitat: analysis and model experiments. Proceedings of XVI International Scientific Conference «Modern trends in biological physics and chemistry. BPPC-2021", Sevastopol, 2021, pp. 217-218. (In Russ.)

33. Havronyuk I.S., Voronin D.P., Kuznecov A.V. Povedencheskiy ritm Trichoplax sp. H2: reakcii na svetovoe izluchenie razlichnoy dliny volny. Materialy XVI Mezhdunarodnoy nauchnoy konferencii «Aktual'nye voprosy biologicheskoy fiziki i himii. BFFH-2021», Sevastopol', 2021, s. 226-228. @@Khavronyuk I.S., Voronin D.P., Kuznetsov A.V. Behavioral rhythm of Trichoplax sp. H2: reactions to light radiation of different wavelengths. Proceedings of XVI International Scientific Conference «Modern trends in biological physics and chemistry. BPPC-2021", Sevastopol, 2021, pp. 226-228. (In Russ.)

34. Schnitzler C.E., Pang K, Powers M.L., Reitzel A.M., Ryan J.F., Simmons D., Tada T., Park M., Gupta J., Brooks S.Y., Blakesley R.W., Yokoyama S., Haddock S.H., Martindale M.Q., Baxevanis A.D. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol., 2012, vol. 10, p. 107.


Login or Create
* Forgot password?