Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Lomonosov Moscow State University
Moscow, Moscow, Russian Federation
Moscow, Moscow, Russian Federation
In this paper, we consider the studies carried out by the authors aimed at developing new hybrid structures and methods for obtaining a family of photochromic labels capable of photocontrolled interaction with inorganic components, as well as the results of studying their photochromic behavior and the selectivity of complex formation processes. In this paper, special attention is devoted to the choice of the desired composition and structure of label molecules and the practical implementation of laboratory technology for the synthesis of a set of target compounds with specified optical parameters. The data obtained open up prospects for the use of a new generation of photochromes based on functionalized spiropyrans as new hybrid materials for the creation on their basis: metal detectors, components of photochromic systems, and prototypes of molecular electronics smart devices.
photochromic labels, spiropyrans, quantum dots, metal cations, complex formation
1. Organic Photochromic and Thermochromic Compounds. Crano J.C., Gugliemetti R.J. Eds., N.Y., London: Plenum Press., 1999, vol. 1, 2, doi:https://doi.org/10.1007/b114211.
2. Zvezdin K.V., Belikov N.E., Laptev A.V., Lukin A.Yu., Demina O.V., Levin P.P., Brichkin S.B., Spirin M.G., Razumov V.F., Shvets V.I., Khodonov A.A. New Hybrid Photochromic Materials with Switchable Fluorescence. Nanotechnologies in Russia, 2012, vol. 7, no. 5-6, pp. 308-317, doi:https://doi.org/10.1134/S1995078012030172. (In Russ.)
3. Photosensitive Molecules for Controlling Biological Function. Neuromethods, 2011, vol. 55, doi:https://doi.org/10.1007/978-1-61779-031-7_1.
4. Willner I., Willner B. Photoswitchable biomaterials as grounds for optobioelectronic devices. Bioelectrochem. Bioenerg., 1997, vol. 42, pp. 43-57, doi:https://doi.org/10.1016/S0302-4598(96)05152-5.
5. Demina O.V., Belikov N.E., Melnikova I.A., Lukin A.Yu., Varfolomeev S.D., Khodonov A.A. New Labels and Probes for the Application in Bionanophotonics. Russ. J. Physical Chemistry B, 2019, vol. 13, no. 6, pp. 938-941, doi:https://doi.org/10.1134/S1990793119060162. (In Russ.)
6. Papazoglou E.S., Parthasarathy A. Bionanotechnology. Morgan&Claypool, 2007, doi:https://doi.org/10.2200/S00051ED1V01Y200610BME007.
7. Laptev A.V., Lukin A.Yu., Belikov N.E., Shvets V.I., Demina O.V., Barachevsky V.A., Khodonov A.A. 5-Formyl-substituted indoline spirobenzopyrans and method for their preparation. Patent of the Russian Federation no. 2358977. Published on 06.20.2009, Bull. no. 17. (In Russ.)
8. Laptev A.V., Lukin A.Yu., Belikov N.E., Fomin M.A., Demina O.V., Shvets V.I., Khodonov A.A. Photochromic derivatives of 5'-vinyl-6-nitro-spirobenzopyran and methods for their preparation. Patent of the Russian Federation no. 2458927. Published on 20.08.2012, Bull. no. 23. (In Russ.)
9. Laptev A.V., Lukin A.Yu., Belikov N.E., Barachevsky V.A., Demina O.V., Khodonov A.A., Varfolomeev S.D., Shvets V.I. Ethynyl-equipped spirobenzopyrans as promising photochromic markers for nucleic acid fragments. Mendeleev Communications, 2013, vol. 23, no. 3, pp. 145-146, doi:https://doi.org/10.1016/j.mencom.2013.05.008.
10. Laptev A.V., Lukin A.Yu., Belikov N.E., Demina O.V., Khodonov A.A., Shvets V.I. New maleimide spirobenzopyran derivatives as photochromic labels for macromolecules with sulfhydryl groups. Mendeleev Communications, 2014, vol. 24, pp. 245-246, doi:https://doi.org/10.1016/j.mencom.2014.06.020.
11. Tomasulo M., Yildiz I., Raymo F.M. Luminescence Modulation with Semiconductor Quantum Dots and Photochromic Ligands. Australian J. Chem., 2006, vol. 59, no. 3, pp. 175-178, doi:https://doi.org/10.1071/CH05332.
12. Tomasulo M., Yildiz I., Raymo F.M. Nanoparticle-induced transition from positive to negative photochromism. Inorganic Chim. Acta, 2007, vol. 360, no. 3, pp. 938-944, doi:https://doi.org/10.1016/j.ica.2006.07.029.
13. Liu C., Yuan J., Luo X., Chen M., Chen Z., Zhao Y., Li X. Folate-Decorated and Reduction-Sensitive Micelles Assembled from Amphiphilic Polymer-Camptothecin Conjugates for Intracellular Drug Delivery.Mol. Pharmaceutics, 2014, vol. 11, no. 11, pp. 4258-4269, doi:https://doi.org/10.1021/mp500468d.
14. Khodonov A.A., Belikov N.E., Lukin A.Yu., Levin P.P., Varfolomeev S.D., Demina O.V. Photochromic derivatives of 5'-hydroxymethyl-6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline]. Patent of the Russian Federation no. 2694904, published: 07.18.2019, Bull. no. 20. (In Russ.)
15. Razumov V.F. Photonics of colloid quantum dots. Klyuev M.B. Ed. Ivanovo Ivanovo State University, 2017, 272 p. (In Russ.)
16. Oleynikov V.A., Sukhanova A.V., Nabiev I.R. Fluorescent semiconductor nanocrystals in biology and medicine. Nanotechnologies in Russia, 2007, vol. 2, no. 1-2, pp. 160-173. (In Russ.)
17. Belikov N.E., Demina O.V., Lukin A.Yu., Petrovskaya L.E., Skladnev D.A., Varfolomeev S.D., Khodonov A.A. Study of the technology of the recombinant target protein selective labeling and development of the synthetic routes for the modified CdTe quantum dots synthesis in aqueous solutions. Russian Journal of Biological Physics and Chemistry, 2021, vol. 6, no. 1, pp. 88-96. (In Russ.)
18. Nikolenko D.Yu., Brichkin S.B., Razumov V.F. Nonisothermal High-Temperature Colloidal Synthesis of Cd Se Nanocrystals. Nanotechnologies in Russia, 2009, vol. 4, no. 5-6, pp. 790-794, doi:https://doi.org/10.1134/S1995078009110044. (In Russ.)