RESPIRATORY PROPERTIES OF BLOOD PLANILIZA HAEMATOCHEILUS (TEMMINCK & SCHLEGEL, 1845) AND ZOSTERISESSOR OPHIOCEPHALUS (PALLAS, 1814)
Abstract and keywords
Abstract (English):
The natural mobility of the organisms affects the functional state and development of many organ systems and tissues. It influences, first of all, oxygen supply systems: respiratory, circulatory, blood. Of particular interest are molecular complexes whose functional characteristics are determined at the genetic level. These include respiratory pigments, hemoglobin in particular, to which this work is devoted. The gas transport properties of the blood of a highly mobile mullet-pilengas (Planiliza haematocheilus) and a sedentary bottom species – grass goby (Zosterisessor ophiocephalus) were studied. Blood was obtained by puncture of the caudal artery. Heparin was used as an anticoagulant. Pilengas' blood had a higher concentration of hemoglobin and the number of red blood cells. The differences in hemoglobin were almost 40% (p <0.01), in erythrocytes about 2 times (p <0.01) (p <0.001). With respect to the mean cell hemoglobin content (MCN), the results were the opposite. Pilengas' blood was characterized by low affinity for oxygen and increased sensitivity to pH. The value of P50 and the values of the Born effect (r) in pilengas were 25-26% (p <0.01) and 2.7-2.8 times (p <0.001), respectively, higher than in grass goby. The values of the Hill coefficient (n), intracellular concentrations of nucleotide triphosphates and Cl- coincided in both species. The differences obtained reflect the process of adaptation of the pilengas organism to a highly mobile lifestyle.

Keywords:
hemoglobin, erythrocytes, blood dissociation curves, intra-erythrocyte medium, Planiliza haematocheilus, Zosterisessor ophiocephalus
Text
Publication text (PDF): Read Download
References

1. Tochilina L.V. Hematological indicators of marine fish in the summer period. Hydrobiol. J., 1991, vol. 27, pp. 63-66. (In Russ.)

2. Vossough G.H., Shahsavani D., Peyghan R. Some blood parameters of gold fish (Carrasius auratus). J. Fac. Vet. Med. Univ. Tehran., 1997, vol. 52, pp. 70-78.

3. Rao S.K., Bhaskar B.R., Panduranga R.D., Durga P.Y.V. Haemograms of six marine teleosts from Visakhapatnam coast. Proc. Indian Nat. Sci. Acad., 1989, vol. 55B, pp. 103-106.

4. Shuett D.A., Lehmann J., Goerlich R., Hamers R. Haematology of swordtail, Xiphophorus helleri. 1. Blood parameters and light microscopy of blood cells. J. Appl. Ichthyol., 1997, vol. 13, pp. 83-89.

5. Korzhuev P.A. Hemoglobin (comparative physiology and biochemistry). Moscow: Nauka, 1964, 287 p. (In Russ.)

6. Korzhuev P.A., Zhavoronkov V.I. Blood volume and the amount of hemoglobin in big-eyed tuna. Respiratory proteins of some groups of modern animals, 1979, pp. 121-126. (In Russ.)

7. Kakuno A., Sezaki K., Ikeda Y. Comparative hematology among 33 fish species of Ostaryophysi. Bull. Natl. Res. Inst. Fish. Sci. Japan, 1996, № 8, pp. 15-27.

8. Lay P.A., Baldwin J. What determines the size of teleost erythrocytes? Correlation with oxygen transport and nuclear volume. Fish Physiol. Biochem., 1999, vol. 20, pp. 31-35.

9. Di Prisco G. Physiological and biochemical adaptations in fish to a cold marine environment. Antarc. Commun.: Species, Struct. Surviv. Battaglia. Cambridge Univ. Press (UK), 1997, pp. 251-260.

10. Soldatov A.A. Oxygen-Dissociation Properties of Blood and Intraerythrocytic Medium Composition in Sea Fish with Different Motor Activity. J. Evolutionary Biochem. Physiol., 1997, vol. 33, no. 6, pp. 534-539.

11. Svetovidov A.N. Fishes of the Black Sea. Moscow: Nauka, 1964, 552 p. (In Russ.)

12. Stenko M.I. Blood. Handbook of clinical laboratory research methods, M.: Medicine, 1975, pp. 5-135. (In Russ.)

13. Klyashtorin L.B., Salimzyanov R.F. Determination of oxygen saturation curves of fish blood. Biol. internal water, 1980, no. 44, pp. 68-71. (In Russ.)

14. Kriklivyi I.A., Rekun G.M., Artyukh V.P., Starodub N.F. Methods of studying the functional properties of hemoglobin. Methods of molecular biology, Kiev: Nauk. dumka, 1979, pp. 191-201. (In Russ.)

15. Soldatov A.A. Peculiarities of structure, polymorphism, and resistance to oxidation of fish hemoglobins (review). J. Evolutionary Biochem. Physiol., 2002, vol. 38, no. 4, pp. 392-400.

16. Soldatov A.A. Effects of temperature, pH, and organic phosphates on fish hemoglobins (review). J. Evolutionary Biochem. Physiol., 2003, vol. 39, no. 2, pp. 159-168.

17. Pelster B., Weber R.E. Influence of organic phosphates on the Root effect of multiple fish haemoglobins. J. Exp. Biol., 1990, vol. 147, pp. 425-437.

18. Wells R.M.G., Baldwin J., Seymour R.S., Weber R.E. Blood oxygen transport and hemoglobin function in three tropical fish species from northern Australian freshwater billabongs. Fish Physiol. Biochem., 1997, vol. 16, no. 3, pp. 247-258.

19. Val A.L., De Menezes G.C., Wood C.M. Red blood cell adrenergic responses in Amazonian teleosts. J. Fish Biol., 1997, vol. 52, no. 1, pp. 83-93.

20. Bartlett G.R. Phosphates in red cells of hagfish and a lamprey. Comp. Biochem. Physiol., 1982, vol. 73A, no. 1, pp. 141-145.

21. Fraboni P.J., Poluhowich J.J. Bohr-effect enhancement in Anguilla rostrata hemoglobin treated with erythrocytic organic phosphates. J. Exp. Mar. Biol. Ecol., 1988, vol. 115, no. 3. pp. 213-220.

22. Wurm Th., Albers C. Interaction of allosteric effectors (ATP, CO2, H+) modulating oxygen affinity of the hemoglobin in the carp, Cyprinus carpio. J. Comp. Physiol., 1989, vol. 159B, no. 3. pp. 255-261.

23. Barra D., Bossa F., Brunori M. Structure of binding sites for heterotropic effectors in fish haemoglobins. Nature, 1981, vol. 293, no. 5833, pp. 587-588.

24. Fago A., Bendixen E., Malte H., Weber R.E. The anodic hemoglobin of Anguilla anguilla. Molecular basis for allosteric effects in a Root-effect hemoglobin. J. Biol. Chem., 1997, vol. 272, no. 25, pp. 15628-15635.

25. Mylvaganam S.E., Bonaventura C., Bonaventura J., Getzoff E.D. Structural basis for the Root effect in haemoglobin. Nat. Struct. Biol., 1996, vol. 3, no. 3. pp. 275-283.

26. D’Avino R., Caruso C., Schinina M.E., Rutigliano B., Romano M., Camardella L., Bossa F., Barra D., Di Prisco G. The amino acid sequence of the  and  chains of the two hemoglobins of the Antarctic fish Notothenia coriiceps neglecta. FEBS Lett., 1989, vol. 250, no. 1, pp. 53-56.

27. Gillen R.G., Riggs A. Structure and function of the isolated hemoglobins of the American eel, Anguilla rostrata. J. Biol. Chem., 1973, vol. 248, no. 6. pp. 1961-1969.

28. Imsland A.K., Brix O., Naevdal G., Samuelsen E.N. Hemoglobin genotypes in turbot (Scophthalmus maximus Rafinesque), their oxygen affinity properties and relation with growth. Comp. Biochem. Physiol., 1997, vol. 116A, no. 2, pp. 157-165.

29. Riccio A., Tamburrini M., Carratore V., Di Prisco G. Functionally distinct haemoglobins of the cryopelagic Antarctic teleost Pagothenia borchgrevinki. J. Fish Biol., 2000, vol. 57, pp. 20-32.

30. Samuelsen E.N., Imsland A.K., Brix O. Oxygen binding properties of three different hemoglobin genotypes in turbot (Scophthalmus maximus Rafinesque): Effect of temperature and pH. Fish. Physiol. Biochem., 1999, vol. 20, no. 2, pp. 135-141.

31. Sauer J., Harrington J.P. Hemoglobins of the sockeye salmon, Oncorhynchus nerka. Comp. Biochem. Physiol., 1988, vol. 91A, no. 1, pp. 109-114.


Login or Create
* Forgot password?