AN EXPERIMENT ON THE GENERATION OF MICROWAVE CHAOTIC RADIO PULSES WITH REPRODUCIBLE WAVEFORM
Abstract and keywords
Abstract (English):
A method for generating chaotic radio pulses using an analog generator of chaotic oscillations is proposed. The method makes it possible to reproduce the pulse wave-form both by the same generator instance and by different instances of structurally identical generators. The pulse waveforms are controlled by the supply voltage of the generator. To prove the concept an experimental test-bed consisting of four identical generators of 100–500 MHz band has been developed. The proposed method can be applied both for coherent reception of chaotic UWB oscillations in the microwave band and for beamforming.

Keywords:
ultra-wide band chaotic radio-pulses, ultra-wide band signals, chaotic signals, coherent emission of chaotic signals
Text
Text (PDF): Read Download
References

1. Y. Liuqing and G. B. Giannakis, “Ultra-wideband communications : An idea whose time has come,” IEEE Signal Process. Mag, vol. 6, pp. 26-54, 2004, doi:https://doi.org/10.1109/MSP.2004.1359140.

2. V. Niemelä, J. Haapola, M. Hämäläinen and J. Iinatti, “An Ultra Wideband Survey : Global Reg-ulations and Impulse Radio Research Based on Standards,’ IEEE Communications Surveys Tutori-als, vol. 19, no. 2, pp. 874-890, second-quarter 2017, doi:https://doi.org/10.1109/COMST.2016.2634593.

3. G. Breed, “A summary of FCC rules for ultra wideband communications,” High Freq. Electron., vol. 4, no.1, pp. 42-44, 2005.

4. K. Mandke, H. Nam, L. Yerramneni, C. Zuniga, and T. Rappaport, “The Evolution of Ultra Wide Band Radio for Wireless Personal Area Network,” High Freq. Electron. No. 5, pp. 22-32, 2003.

5. IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). Available online: http://www.ieee802.org/15/pub/TG3a.html (accessed on 24 January 2023).

6. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011); IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs). IEEE Press : New York City, NY, USA, 2016; pp. 1-709.

7. IEEE Std 802.15.6-2012; IEEE Standard for Local and metropolitan area networks. Part 15.6: Wire-less Body Area Networks. IEEE Press: New York City, NY, USA, 2012; pp. 1-271.

8. IEEE Std 802.15.4z-2020 (Amendment to IEEE Std 802.15.4-2020); IEEE Standard for Low-Rate Wireless Networks-Amendment 1: Enhanced Ultra Wideband (UWB) Physi-cal Layers (PHYs) and Associated Ranging Techniques. IEEE Press: New York City, NY, USA, 2020; pp. 1-174.

9. M. Stocker, et al. “On the Performance of IEEE 802.15. 4z-Compliant Ultra-Wideband Devices,” 2022 Workshop on Benchmarking Cyber-Physical Systems and Internet of Things (CPS-IoTBench). IEEE, pp. 28-33, 2022.

10. H. Chen, et al. “A 4-to-9GHz IEEE 802.15.4z-Compliant UWB Digital Transmitter with Recon-figurable Pulse-Shaping in 28nm CMOS,” in Proceedings of the 2022 IEEE Radio Frequency Inte-grated Circuits Symposium (RFIC), Denver, CO, USA, 19-21 June 2022; pp. 99-102.

11. Apple U1 TMKA75 Ultra Wideband (UWB) Chip Analysis. Available online: https://www.techinsights.com/blog/apple-u1-tmka75-ultra-wideband-uwb-chip-analysis (accessed on 24 January 2023).

12. What Is Ultra-Wideband, and How Does It Work? Available online: https://www.smartprix.com/bytes/phones-with-uwb-ultrawideband-connectivity/ (accessed on 24 January 2023).

13. W. M. Tam, F. C. M. Lau, and C. K. Tse, Digital Communications With Chaos : Multiple Ac-cess Techniques and Performance Evaluation. Oxford, U.K. : Elsevier Science, 2010.

14. M. Messaadi et al. “GoF Based Chaotic OnOff Keying: A New Non-Coherent Modula-tion for Direct Chaotic Communication,” J. Commun. Technol. Electron., vol. 66 (Suppl. 2), pp. S194-S200, 2021.

15. Chaotic Signals in Digital Communications, 1st ed. ; Eisencraft, M., Attux, R., Suyama, R., Eds. Boca Raton, FL, USA : CRC Press, 2014.

16. G. Kaddoum, “Wireless Chaos-Based Communication Systems : A Comprehensive Survey,” IEEE Access, vol. 4, pp. 2621-2648, 2016.

17. N. X. Quyen, V. Van Yem and T. M. Hoang, “Chaotic modulation based on the combination of CPPM and CPWM,” Proceedings of the Joint INDS’11 ISTET’11, Klagenfurt am Wörthersee, Austria, pp. 1-6, 2011, doi:https://doi.org/10.1109/INDS.2011.6024801.

18. R. Munirathinam, A. Aboltins, D. Pikulins and J. Grizans, “Chaotic Non-Coherent Pulse Posi-tion Modulation Based Ultra-Wideband Communication System,” 2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, pp. 1-6, 2021, doi:https://doi.org/10.1109/MTTW53539.2021.9607075.

19. U. Onunkwo and Ye Li, “On the optimum pulse-position modulation index for ultra-wideband communication,” Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies : Frontiers of Mobile and Wireless Communication (IEEE Cat. No.04EX710), Shanghai, China, vol. 1, pp. 77-80, 2004, doi:https://doi.org/10.1109/CASSET.2004.1322921.

20. T. I. Chien, N. Z. Wang, T. L. Liao and S. B. Chang, “Design of multiple-accessing chaotic digital communication system based on Interleaved Chaotic Differential Peaks Keying (I-CDPK),” 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Pro-cessing, Graz, Austria, pp. 638-642, 2008, doi:https://doi.org/10.1109/CSNDSP.2008.4610717.

21. Y.-P. Hong, S.-Y. Jin and H.-Y. Song, “Coded N-ary PPM UWB Impulse Radio with Chaotic Time Hopping and Polarity Randomization,” 2007 3rd International Workshop on Signal Design and Its Applications in Communications, Chengdu, China, pp. 252-256, 2007, doi:https://doi.org/10.1109/IWSDA.2007.4408370.

22. Z. -J. Yao, Q. -H. Meng, G. -W. Li and P. Lin, “Non-crosstalk real-time ultrasonic range sys-tem with optimized chaotic pulse position-width modulation excitation,” 2008 IEEE Ultrasonics Symposium, Beijing, China, pp. 729-732, 2008, doi:https://doi.org/10.1109/ULTSYM.2008.0174.

23. L. Zhang, J. Wang, J. Tao and S. Liu, “A New Pulse Modulation Method for Underwater Acoustic Communication Combined with Multiple Pulse Characteristics,” 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, China, pp. 1-6, 2018. doi:https://doi.org/10.1109/ICSPCC.2018.8567790.

24. H. Yang and G. P. Jiang, “Delay-Variable Synchronized Chaotic Pulse Position Modulation for Ultra-Wide Bandwidth Communication,” 2006 International Conference on Communications, Cir-cuits and Systems, Guilin, China, pp. 2692-2694, 2006, doi:https://doi.org/10.1109/ICCCAS.2006.285225.

25. N. F. Rulkov, M. M. Sushchik, L. S. Tsimring and A. R. Volkovskii, “Digital communication using chaotic-pulse-position modulation,” IEEE Transactions on Circuits and Systems I: Funda-mental Theory and Applications, vol. 48, no. 12, pp. 1436-1444, Dec. 2001, doi:https://doi.org/10.1109/TCSI.2001.972850.

26. Nguyen Xuan Quyen, Vu Van Yem, Thang Manh Hoang and K. Kyamakya, “Digital commu-nication using MxN-ary chaotic pulse width-position modulation,” 2012 International Conference on Advanced Technologies for Communications, Ha Noi, Vietnam, pp. 362-366, 2012, doi:https://doi.org/10.1109/ATC.2012.6404294.

27. Q. Zhu, C. Zou and Z. Jia, “Performance Analysis of Ultra Wideband Communication System with Time-Hopping M-ary Biorthogonal Pulse Position Modulation,” 2006 First International Con-ference on Communications and Networking in China, Beijing, China, pp. 1-6, 2006, doi:https://doi.org/10.1109/CHINACOM.2006.344655.

28. G. Tang, L. Zhu, Q. Wu, Q. He and L. Yu, “A Hybrid Spread Spectrum Communication Meth-od Based on Chaotic Sequence,” 2021 International Symposium on Networks, Computers and Communications (ISNCC), Dubai, United Arab Emirates, pp. 1-5, 2021, doi:https://doi.org/10.1109/ISNCC52172.2021.9615817.

29. Z. Chen, L. Zhang and Z. Wu, “High Data Rate Discrete-Cosine-Spreading Aided M-Ary Dif-ferential Chaos Shift Keying Scheme With Low PAPR,” IEEE Transactions on Circuits and Sys-tems II: Express Briefs, vol. 67, no. 11, pp. 2492-2496, Nov. 2020, doi:https://doi.org/10.1109/TCSII.2020.2980738.

30. S. Erkucuk and Dong In Kim, “Combined M-ary code shift keying/binary pulse position modu-lation for ultra wideband communications,” IEEE Global Telecommunications Conference, GLOBECOM’04, Dallas, TX, USA, vol. 2, pp. 804-808, 2004, doi:https://doi.org/10.1109/GLOCOM.2004.1378071.

31. C. Liu, J. Cheng and R. Zhang, “An orthogonal mixed chaotic spread spectrum algorithm for satellite communication,” 2019 12th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, pp. 235-240, 2019, doi:https://doi.org/10.1109/ISCID.2019.10137.

32. M. S. K. Manikandan, S. Ravikumar, V. Abhaikumar and S. J. Thiruvengadam, “A Novel Pulse Based Ultrawide Band System Using Chaotic Spreading Sequences,” 2007 2nd International Conference on Communication Systems Software and Middleware, Bangalore, India, pp. 1-5, 2007, doi:https://doi.org/10.1109/COMSWA.2007.382453.

33. A. Kotti, S. Meherzi, S. Marcos and S. Belghith, “Asynchronous DS-UWB communication using spatiotemporal chaotic waveforms and sequences,” 2009 First International Conference on Communications and Networking, Hammamet, Tunisia, pp. 1-5, 2009, doi:https://doi.org/10.1109/COMNET.2009.5373551.

34. G. Yuan, Z. Chen, X. Gao and Y. Zhang, “Enhancing the Security of Chaotic Direct Sequence Spread Spectrum Communication Through WFRFT,” IEEE Communications Letters, vol. 25, no. 9, pp. 2834-2838, Sept. 2021, doi:https://doi.org/10.1109/LCOMM.2021.3096388.

35. Hai-Peng Ren, Chao Bai, Qingju Kong, Murilo S. Baptista, and Celso Grebogi, “A chaotic spread spectrum system for underwater acoustic communication,” Physica A : Statistical Mechanics and its Applications, vol. 478, pp. 77-92, 2017, doi:https://doi.org/10.1016/j.physa.2017.02.036.

36. H.-P. Ren, S.-L. Guo, C. Bai and X.-H. Zhao, “Cross Correction and Chaotic Shape-Forming Filter Based Quadrature Multi-Carrier Differential Chaos Shift Keying Communication,” IEEE Transactions on Vehicular Technology, vol. 70, no. 12, pp. 12675-12690, Dec. 2021, doi:https://doi.org/10.1109/TVT.2021.3119176.

37. J.-L. Yao, C. Li, H.-P. Ren, and Celso Grebogi, “Chaos-based wireless communication resist-ing multipath effects,” vol. 96, no. 3, Sep. 2017, doi:https://doi.org/10.1103/physreve.96.032226.

38. D. Song, J. Liu and Fang Wang, “Statistical analysis of chaotic stochastic properties based on the logistic map and Fibonacci sequence,” Proceedings of 2013 2nd International Conference on Measurement, Information and Control, Harbin, China, pp. 611-614, 2013, doi:https://doi.org/10.1109/MIC.2013.6758038.

39. Jian Zhang, Jian Cheng and Guangxia Li, “Chaotic spread-spectrum sequences using chaotic quantization,” 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, pp. 40-43, 2007, doi:https://doi.org/10.1109/ISPACS.2007.4445818.

40. An Chengquan and Zhou Tingxian, “Design of chaotic spread-spectrum sequences with good correlation properties for DS/CDMA,” 2003 IEEE International Symposium on Circuits and Sys-tems (ISCAS), Bangkok, Thailand, pp. III-III, 2003, doi:https://doi.org/10.1109/ISCAS.2003.1204966.

41. P. Velavan and M. Santhi, “Design and FPGA realization of MC-CDMA system using pseudo chaotic sequence generator,” 2014 International Conference on Communication and Signal Pro-cessing, Melmaruvathur, India, pp. 498-502, 2014, doi:https://doi.org/10.1109/ICCSP.2014.6949892.

42. L. Xiao, G. Xuan and Y. Wu, “Research on an improved chaotic spread spectrum sequence,” 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, pp. 420-423, 2018, doi:https://doi.org/10.1109/ICCCBDA.2018.8386553.

43. U. Rastogi, S. Anuradha, R. C. Shekar, S. Singh and P. S. H. Rao, “Optimal chaotic sequences for DS-CDMA using genetic algorithm,” 2017 International Conference on Wire-less Communica-tions, Signal Processing and Networking (WiSPNET), Chennai, India, pp. 900-904, 2017, doi:https://doi.org/10.1109/WiSPNET.2017.8299892.

44. R. Xue, Y. Xiong and Q. Cheng, “A Novel Ranging Code based on improved Logistic Map Chaotic Sequences,” 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea (South), pp. 11-15, 2019, doi:https://doi.org/10.23919/ICACT.2019.8701898.

45. K. D. Rao and B. Raju, “Improved Robust Multiuser Detection in Non-Gaussian Channels Using a New M-Estimator and Spatiotemporal Chaotic Spreading Sequences,” APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems, Singapore, pp. 1729-1732, 2006, doi:https://doi.org/10.1109/APCCAS.2006.342131.

46. S. Sedaghatnejad and M. Farhang, “Detectability of Chaotic Direct-Sequence Spread-Spectrum Signals,” IEEE Wireless Communications Letters, vol. 4, no. 6, pp. 589-592, Dec. 2015, doi:https://doi.org/10.1109/LWC.2015.2469776.

47. L. Xiao, G. Xuan and Y. Wu, “Blind Estimation of Chaotic Spread Spectrum Sequences by Neural Network,” 2018 11th International Congress on Image and Signal Processing, Bio-Medical Engineering and Informatics (CISP-BMEI), Beijing, China, pp. 1-9, 2018, doi:https://doi.org/10.1109/CISPBMEI.2018.8633136.

48. F. O. Hounkpevi and E. E. Yaz, “Chaotic-Pulse-Position Modulation : A third party intrusion scheme using Kalman Filter,” 2004 IEEE Electro/Information Technology Conference, Milwaukee, WI, USA, pp. 20-25, 2004, doi:https://doi.org/10.1109/EIT.2004.4569361.

49. B. S. Dmitriev, J. D. Zharkov, V. N. Skorokhodov and S. A. Sadovnikov, “Ultra wide band UHF chaotic impulse generator,” IVESC 2012, Monterey, CA, USA, pp. 91-92, 2012, doi:https://doi.org/10.1109/IVESC.2012.6264162.

50. G. V. Fierro and G. E. Flores-Verdad, “A CMOS low complexity Gaussian pulse generator for ultra wideband communications,” 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun, Mexico, pp. 70-73, 2009, doi:https://doi.org/10.1109/MWSCAS.2009.5236151.

51. B. S. Dmitriev, Y. D. Zharkov, V. N. Skorokhodov and A. A. Biryukov, “KLYSTRON - Generator of Chaotic Radioimpulses,” 2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources, Monterey, CA, USA, pp. 105-106, 2006, doi:https://doi.org/10.1109/IVELEC.2006.1666206.

52. Youwei Wang, Liping Wang, Shuang Yu, Lei Zhang, Dongmei Yan and Yunhua Li, “Method of chaotic pulse sequence produced by continuous chaotic system,” 2008 9th International Confer-ence on Signal Processing, Beijing, pp. 1892-1895, 2008, doi:https://doi.org/10.1109/ICOSP.2008.4697511.

53. M. Haimovich, R. S. Blum and L. J. Cimini, “MIMO Radar with Widely Separated Antennas,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 116-129, 2008, doi:https://doi.org/10.1109/MSP.2008.4408448.

54. Z. Ben Jemaa and S. Belghith, “Chaotic sequences with good correlation properties for MIMO radar application,” 2016 24th International Conference on Software, Telecommunications and Com-puter Networks (SoftCOM), Split, Croatia, pp. 1-5, 2016, doi:https://doi.org/10.1109/SOFTCOM.2016.7772127.

55. G. Zeng, Y. Liao, J. Wang and Y.-C. Liang, “Design of a Chaotic Index Modulation Aided Frequency Diverse Array Scheme for Directional Modulation,” IEEE Transactions on Vehicular Technology, pp. 1-6, Jan. 2023, doi:https://doi.org/10.1109/TVT.2023.3253926.

56. S. Dmitriev, E. V. Efremova, L. V. Kuz’min, “Chaotic Pulse Trains Generated by a Dynamical System Driven by a Periodic Signal,” Technical Physics Letters, vol. 31, no. 11, p. 961-963, 2005, doi: https://doi.org/10.1134/1.2136965.

57. S. Dmitriev, E. V. Efremova, L. V. Kuz’min, and N. V. Atanov, “A train of chaotic pulses gen-erated by a dynamic system driven by an external (periodic) force,” Journal of Communications Technology and Electronics, vol. 51, no. 5, pp. 557-567, May 2006, doi:https://doi.org/10.1134/s1064226906050093.

58. S. Dmitriev, E. Efremova, L. Kuz’min, and N. Atanov, “Forming pulses in nonautonomous chaotic oscillator,” Int. J. Bifurc. Chaos, vol. 17, no. 10, pp. 3443-3448, Oct. 2007, doi:https://doi.org/10.1142/s0218127407019184.

59. S. Dmitriev, B. Y. Kyarginsky, A. I. Panas, and S. O. Starkov, “Experiments on ultra wideband direct chaotic information transmission in microwave band,” Int. J. Bifurc. Chaos, vol. 13, no. 6, 2003, pp. 1495-1507.

60. S. Dmitriev, K. V. Zakharchenko, and D. Y. Puzikov, “Introduction to the Theory of Direct Chaotic Data Transmission,” J. Commun. Technol. Electron, vol. 48, no. 3, pp. 293-302, 2003.

61. Yu. V. Andreyev, A. S. Dmitriev, E. V. Efremova, A. D. Khilinsky, L. V. Kuzmin, “Qualitative theory of dynamical systems, chaos and contemporary communications,” Int. J. Bifurc. Chaos, vol. 15, no. 11, 2005, pp. 3639-3651.

62. S. Dmitriev, M. Yu. Gerasimov, V. V. Itzkov, V. A. Lazarev, M. G. Popov, and A. I. Ryzhov, “Active wireless ultrawideband networks based on chaotic radio pulses,” J. Commun. Technol. Electron, vol. 62, no. 4, pp. 380-388, 2017.

63. S. Dmitriev, L. V. Kuzmin, V. A. Lazarev, A. I. Ryshov, Yu. V. Andreyev, and M. G. Popov, “Self-organizing ultrawideband wireless sensor network,” Proceedings of the Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO), Kazan, Russia, pp. 1-6, 3-4 July 2017.

64. L. V. Kuzmin, A. V. Grinevich, and M. D. Ushakov, “An Experimental Investigation of the Multipath Propagation of Chaotic Radio Pulses in a Wireless Channel,’ Tech. Phys. Lett, vol. 44, pp. 726-729, 2018, doi:https://doi.org/10.1134/S1063785018080242.

65. L.V. Kuz’min and A. V. Grinevich, “Method of Blind Detection of Ultrawideband Chaotic Radio Pulses on the Background of Interpulse Interference,” Tech. Phys. Lett, vol. 45, pp. 831-834, 2019, doi:https://doi.org/10.1134/S1063785019080261.

66. M. P. Kennedy, “Chaos in the Colpitts Oscillator,” IEEE Trans. Circuits Syst. I, vol. 41, no. 11, pp. 771-774, 1994.

67. S. Dmitriev, E. V. Efremova, N. A. Maksimov, and E. V. Grigor’ev, “Generator of microwave chaotic oscillations based on a self-oscillating system with 2.5 degrees of freedom,” J. Commun. Technol. Electron. vol. 52, no. 10, 2007, pp. 1137-1145, Oct. 2007, doi:https://doi.org/10.1134/s1064226907100105.

68. S. Dmitriev, E. V. Efremova, and N. V. Rumyantsev, “A microwave chaos generator with a flat envelope of the power spectrum in the range of 3-8 GHz,” vol. 40, no. 1, pp. 48-51, Feb. 2014, doi:https://doi.org/10.1134/s1063785014010180.

69. E. V. Efremova, and A. S. Dmitriev, “Ultrawideband Microwave 3-7 GHz Chaotic Oscillator Implemented as SiGe Integrated Circuit,” in: Mantica, G., Stoop, R., Stramaglia, S. (eds) Emergent Complexity from Nonlinearity, in Physics, Engineering and the Life Sciences. Springer Proceedings in Physics, vol. 191, pp. 71-80, 2017. doi:https://doi.org/10.1007/978-3-319-47810-4_7.


Login or Create
* Forgot password?