Москва, г. Москва и Московская область, Россия
Москва, г. Москва и Московская область, Россия
Москва, г. Москва и Московская область, Россия
Москва, г. Москва и Московская область, Россия
Предлагается метод генерации хаотических радиоимпульсов при помощи аналогового генератора хаотических колебаний. Метод позволяет воспроизводить форму импульсов как одним и тем же экземпляром генератора хаотических колебаний, так и разными экземплярами конструктивно идентичных генераторов. Форма импульсов управляемо изменяется и воспроизводится путем изменения напряжения питания генератора хаотических колебаний. Разработан макет из четырех генераторов, экспериментально доказывающий данную возможность в диапазоне частот от 100 до 500 МГц. Предлагаемый метод необходим для создания способов когерентного приема хаотических СШП колебаний СВЧ диапазона и для когерентного излучения хаотических сигналов в задачах диаграммобразования.
сверхширокополосные хаотические радиоимпульсы, сверхширокополосные сигналы, хаотические сигналы, когерентное излучение хаотических сигналов
1. Liuqing Y., Giannakis G. B. Ultra-wideband communications : An idea whose time has come // IEEE Signal Process. Mag. 2004. Т. 6. С. 26-54.
2. Niemelä V., Haapola J., Hämäläinen M., Iinatti J. An Ultra Wideband Survey : Global Regulations and Impulse Radio Research Based on Standards // IEEE Communications Surveys Tutorials. 2017. Т. 19, № 2. С. 874-890.
3. Breed G. A summary of FCC rules for ultra wideband communications // High Freq. Electron. 2005. Т. 4, № 1. С. 42-44.
4. Mandke K., Nam H., Yerramneni L., Zuniga C., Rappaport T. The Evolution of Ultra Wide Band Radio for Wireless Personal Area Network // High Freq. Electron. 2003. № 5. С. 22-32.
5. IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). Available online: http://www.ieee802.org/15/pub/TG3a.html (accessed on 24 January 2023).
6. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011); IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs). IEEE Press : New York City, NY, USA, 2016. 709 с.
7. IEEE Std 802.15.6-2012; IEEE Standard for Local and metropolitan area networks-Part 15.6: Wire-less Body Area Networks. IEEE Press : New York City, NY, USA, 2012. 271 с.
8. IEEE Std 802.15.4z-2020 (Amendment to IEEE Std 802.15.4-2020); IEEE Standard for Low-Rate Wireless Networks-Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers (PHYs) and Associated Ranging Techniques. IEEE Press : New York City, NY, USA, 2020. 174 с.
9. Stocker M. et al. On the Performance of IEEE 802.15. 4z-Compliant Ultra-Wideband Devices // 2022 Workshop on Benchmarking Cyber-Physical Systems and Internet of Things (CPS-IoTBench). IEEE, 2022. С. 28-33.
10. Chen H. et al. A 4-to-9 GHz IEEE 802.15. 4z-Compliant UWB Digital Transmitter with Re-configurable Pulse-Shaping in 28nm CMOS // 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2022. С. 99-102.
11. Apple U1 TMKA75 Ultra Wideband (UWB) Chip Analysis. Available online: https://www.techinsights.com/blog/apple-u1-tmka75-ultra-wideband-uwb-chip-analysis (accessed on 24 January 2023).
12. What Is Ultra-Wideband, and How Does It Work? Available online: https://www.smartprix.com/bytes/phones-with-uwb-ultrawideband-connectivity/ (accessed on 24 January 2023).
13. Tam W. M., Lau F. C. M., Tse C. K. Digital Communications With Chaos : Multiple Access Techniques and Performance Evaluation. Oxford, U.K. : Elsevier Science, 2010. 258 c.
14. Messaadi M. et al. GoF Based Chaotic On-Off Keying: A New Non-Coherent Modulation for Direct Chaotic Communication // Journal of Communications Technology and Electronics. 2021. Т. 66, Suppl 2. С. S194-S200.
15. Chaotic Signals in Digital Communications, 1st ed.; Eisencraft M., Attux R., Suyama R., Eds.; Boca Raton : CRC Press, 2014.
16. Kaddoum G. Wireless chaos-based communication systems : A comprehensive survey // IEEE Access. 2016. Т. 4. С. 2621-2648.
17. Quyen N. X., Van Yem V., Hoang T. M. Chaotic modulation based on the combination of CPPM and CPWM // Proceedings of the Joint INDS’11 & ISTET’11. IEEE, 2011. С. 1-6.
18. Munirathinam R. et al. Chaotic Non-Coherent Pulse Position Modulation Based Ultra-Wideband Communication System // 2021 IEEE Microwave Theory and Techniques in Wire-less Communications (MTTW). IEEE, 2021. С. 1-6.
19. Onunkwo U., Li Y. On the optimum pulse-position modulation index for ultra-wideband communication // Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies : Frontiers of Mobile and Wireless Communication. IEEE, 2004. Т. 1. С. 77-80.
20. Chien T. I. et al. Design of multiple-accessing chaotic digital communication system based on Interleaved Chaotic Differential Peaks Keying (I-CDPK) // 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. IEEE, 2008. С. 638-642.
21. Hong Y. P., Jin S. Y., Song H. Y. Coded N-ary PPM UWB impulse radio with chaotic time hopping and polarity randomization // 2007 3rd International Workshop on Signal Design and Its Applications in Communications. IEEE, 2007. С. 252-256.
22. Yao Z. J. et al. Non-crosstalk real-time ultrasonic range system with optimized chaotic pulse position-width modulation excitation // 2008 IEEE Ultrasonics Symposium. IEEE, 2008. С. 729-732.
23. Zhang L. et al. A new pulse modulation method for underwater acoustic communication combined with multiple pulse characteristics // 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2018. С. 1-6.
24. Yang H., Jiang G. P. Delay-variable synchronized chaotic pulse position modulation for ultra-wide bandwidth communication // 2006 International Conference on Communications, Circuits and Systems. IEEE, 2006. Т. 4. С. 2692-2694.
25. Rulkov N. F. et al. Digital communication using chaotic-pulse-position modulation // IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 2001. Т. 48, № 12. С. 1436-1444.
26. Quyen N. X. et al. Digital communication using MxN-ary chaotic pulse width-position modulation // The 2012 International Conference on Advanced Technologies for Communications. IEEE, 2012. С. 362-366.
27. Zhu Q., Zou C., Jia Z. Performance Analysis of Ultra Wideband Communication System with Time-Hopping M-ary Biorthogonal Pulse Position Modulation // 2006 First International Conference on Communications and Networking in China. IEEE, 2006. С. 1-6.
28. Tang G. et al. A hybrid spread spectrum communication method based on chaotic sequence // 2021 International Symposium on Networks, Computers and Communications (ISNCC). IEEE, 2021. С. 1-5.
29. Chen Z., Zhang L., Wu Z. NGD Analysis of Turtle-Shape Microstrip Circuit // IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS. 2020. Т. 67, №. 11. С. 2492-2496.
30. Erkucuk S., Kim D. I. Combined M-ary code shift keying/binary pulse position modulation for ultra wideband communications // IEEE Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, 2004. Т. 2. С. 804-808.
31. Liu C., Cheng J., Zhang R. An orthogonal mixed chaotic spread spectrum algorithm for satellite communication // 2019 12th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2019. Т. 2. С. 235-240.
32. Manikandan M. S. K. et al. A Novel Pulse Based Ultrawide Band System Using Chaotic Spreading Sequences // 2007 2nd International Conference on Communication Systems Soft-ware and Middleware. IEEE, 2007. С. 1-5.
33. Kotti A. et al. Asynchronous DS-UWB communication using spatiotemporal chaotic wave-forms and sequences // 2009 First International Conference on Communications and Networking. IEEE, 2009. С. 1-5.
34. Yuan G. et al. Enhancing the security of chaotic direct sequence spread spectrum communication through WFRFT // IEEE Communications Letters. 2021. Т. 25, № 9. С. 2834-2838.
35. Ren H. P., Bai C. Kong Q., Baptista M. S., Grebogi C. A chaotic spread spectrum system for underwater acoustic communication // Physica A. 2017. Т. 478. С. 77-92.
36. Ren H. P. et al. Cross correction and chaotic shape-forming filter based quadrature multi-carrier differential chaos shift keying communication // IEEE Transactions on Vehicular Technology. 2021. Т. 70, № 12. С. 12675-12690.
37. Yao J. L. et al. Chaos-based wireless communication resisting multipath effects // Physical Review E. 2017. Т. 96, № 3. С. 032226.
38. Song D., Liu J., Wang F. Statistical analysis of chaotic stochastic properties based on the logistic map and Fibonacci sequence // Proceedings of 2013 2nd International Conference on Measurement, Information and Control. IEEE, 2013. Т. 1. С. 611-614.
39. Zhang J., Cheng J., Li G. Chaotic spread-spectrum sequences using chaotic quantization // 2007 International Symposium on Intelligent Signal Processing and Communication Systems. IEEE, 2007. С. 40-43.
40. Chengquan A., Tingxian Z. Design of chaotic spread-spectrum sequences with good correlation properties for DS/CDMA // 2003 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2003. Т. 3. С. III-III.
41. Velavan P., Santhi M. Design and FPGA realization of MC-CDMA system using pseudo chaotic sequence generator // 2014 International Conference on Communication and Signal Processing. IEEE, 2014. С. 498-502.
42. Xiao L., Xuan G., Wu Y. Research on an improved chaotic spread spectrum sequence // 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, 2018. С. 420-423.
43. Rastogi U. et al. Optimal chaotic sequences for DS-CDMA using genetic algorithm // 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, 2017. С. 900-904.
44. Rui X. U. E., Xiong Y., Cheng Q. A novel ranging code based on improved logistic map chaotic sequences // 2019 21st International Conference on Advanced Communication Technology (ICACT). IEEE, 2019. С. 11-15.
45. Rao K. D., Raju B. Improved robust multiuser detection in non-Gaussian channels using a new M-estimator and spatiotemporal chaotic spreading sequences // APCCAS 2006-2006 IEEE Asia Pacific Conference on Circuits and Systems. IEEE, 2006. С. 1729-1732.
46. Sedaghatnejad S., Farhang M. Detectability of chaotic direct-sequence spread-spectrum signals // IEEE Wireless Communications Letters. 2015. Т. 4, № 6. С. 589-592.
47. Xiao L., Xuan G., Wu Y. Blind estimation of chaotic spread spectrum sequences by neural network // 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2018. С. 1-9.
48. Hounkpevi F. O., Yaz E. E. Chaotic-Pulse-Position Modulation: A third party intrusion scheme using Kalman Filter // 2004 IEEE Electro/Information Technology Conference. IEEE, 2004. С. 20-25.
49. Dmitriev B. S. et al. Ultra wide band UHF chaotic impulse generator // IVESC 2012. IEEE, 2012. С. 91-92.
50. Fierro G. V., Flores-Verdad G. E. A CMOS low complexity gaussian pulse generator for ultra wideband communications // 2009 52nd IEEE International Midwest Symposium on Circuits and Systems. IEEE, 2009. С. 70-73.
51. Dmitriev B. S. et al. KLYSTRON-Generator of Chaotic Radioimpulses // 2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources. IEEE, 2006. С. 105-106.
52. Wang Y. et al. Method of chaotic pulse sequence produced by continuous chaotic system // 2008 9th International Conference on Signal Processing. IEEE, 2008. С. 1892-1895.
53. Haimovich A. M., Blum R. S., Cimini L. J. MIMO Radar with Widely Separated Antennas // IEEE Signal Process Mag. 2008. Т. 25, № 1. С. 116-129.
54. Jemaa Z. B., Belghith S. Chaotic sequences with good correlation properties for MIMO Radar application // 2016 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). IEEE, 2016. С. 1-5.
55. Zeng G. et al. Design of a Chaotic Index Modulation Aided Frequency Diverse Array Scheme for Directional Modulation // IEEE Transactions on Vehicular Technology. - 2023. C. 1-6.
56. Dmitriev A. S., Efremova E. V., Kuz’min L. V. Chaotic pulse trains generated by a dynamical system driven by a periodic signal // Technical physics letters. 2005. Т. 31. С. 961-963.
57. Dmitriev, A. S., Efremova E. V., Kuz’min L. V., Atanov N. V. A train of chaotic pulses generated by a dynamic system driven by an external (periodic) force // J. Commun. Technol. Electron. 2006. Т. 51. С. 557-567.
58. Dmitriev A., Efremova E., Kuzmin L., Atanov N. Forming pulses in non-autonomous chaotic oscillator // Int. J. Bifurc. Chaos. 2007. Т. 17, № 10. С. 3443-3448.
59. Dmitriev A. S., Kyarginsky B. Y., Panas A. I., Starkov S. O. Experiments on ultra wideband direct chaotic information transmission in microwave band // Int. J. Bifurc. Chaos. 2003. Т. 6. С. 1495-1507.
60. Dmitriev A. S., Zakharchenko K. V., Puzikov D. Y. Introduction to the Theory of Direct Chaotic Data Transmission // Journal of communications technology & electronics. 2003. Т. 48, № 3. С. 293-302.
61. Andreyev Y. V. et al. Qualitative theory of dynamical systems, chaos and contemporary wire-less communications // International journal of bifurcation and chaos. 2005. Т. 15. №. 11. С. 3639-3651.
62. Dmitriev A. S. et al. Active wireless ultrawideband networks based on chaotic radio pulses // Journal of Communications Technology and Electronics. 2017. Т. 62, № 4. С. 380-388.
63. Dmitriev A. S. et al. Self-organizing ultrawideband wireless sensor network // 2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINK-HROINFO). IEEE, 2017. С. 1-6.
64. Kuzmin L. V., Grinevich A. V., Ushakov M. D. An experimental investigation of the multi-path propagation of chaotic radio pulses in a wireless channel // Technical Physics Letters. 2018. Т. 44. С. 726-729.
65. Kuz’min L. V., Grinevich A. V. Method of blind detection of ultrawideband chaotic radio pulses on the background of interpulse interference //Technical Physics Letters. 2019. Т. 45. С. 831-834.
66. Kennedy M. P. Chaos in the Colpitts oscillator // IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1994. Т. 41, № 11. С. 771-774.
67. Dmitriev A. S. et al. Generator of microwave chaotic oscillations based on a self-oscillating system with 2.5 degrees of freedom // Journal of Communications Technology and Electronics. 2007. Т. 52. С. 1137-1145.
68. Dmitriev A. S., Efremova E. V., Rumyantsev N. V. A microwave chaos generator with a flat envelope of the power spectrum in the range of 3-8 GHz // Technical Physics Letters. 2014. Т. 40. С. 48-51.
69. Efremova E. V., Dmitriev A. S. Ultrawideband microwave 3-7 GHz chaotic oscillator implemented as SiGe integrated circuit // Emergent Complexity from Nonlinearity, in Physics, Engineering and the Life Sciences : Proceedings of the XXIII International Conference on Non-linear Dynamics of Electronic Systems, Como, Italy, 7-11 September 2015. Cham : Springer International Publishing, 2017. С. 71-80.