THE GELATINOUS-TO-FORAGE ZOOPLANKTON BIOMASS RATIO OF THE WORLD OCEAN
Abstract and keywords
Abstract (English):
The spatiotemporal variability of ocean profound biophysical characteristics (i.e. the intensity of bioluminescence, soun scattering layers and etc.) gradually depends on the zooplankton biomass distribution pattern. In turn, the forage zooplankton fraction (which is represented basically by crustaceans contributing to a small pelagic fish diet) and the gelatinous zooplankton fraction (which is characterized by jellyfish, ctenophores, and some other organisms), both play important but different roles in matter and energy transfer in the pelagic World Ocean. Forage zooplankton is the transformer that links producers to high trophic-level consumers. The gelatinous zooplankton channels the organic carbon towards a detrital pathway. The ratio of forage-to-gelatinous zooplankton biomass inferred out of international databases (JeDI and COPEPOD) and published papers (with data averaged for 1951-2014), was calculated. The dominance of gelatinous biomass (in carbon units) over the forage biomass in the upper 200 m layer across the World Ocean’s northern hemisphere was shown. This dominance can negatively impact fish stock recruitment.

Keywords:
zooplankton biomass, pelagic ecosystems, World Ocean
Text
Text (PDF): Read Download
References

1. Buitenhuis E., Le Que´re´ C., Aumont O., Beaugrand G., Bunker B., Hirst A., Ikeda T. et al. Biogeochemical fluxes through mesozooplankton. Glob. Biogeochem. Cycles, 2006, no. 20, p. GB2003, doi:https://doi.org/10.1029/2005GB002511.

2. Finenko G.A., Abolmasova G.I., Romanova Z.A., Datsyk N.A., Anninski B.E. Population dynamics of the ctenophore Mnemiopsis leidyi and its impact on the zooplankton in the coastal regions of the Black Sea of the Crimean coast in 2004-2008. Oceanol., 2013, vol. 53, no. 1, pp. 80-88.

3. Nydenko S.V., Khoruzhiy A.A. The food supply for nekton in the epipelagic layer of Pacific waters at the Kuril Islands in the summer seasons of the 2000s. Rus. J. Mar. Biol., 2014, no. 40, pp. 502-518.

4. Luo J.Y., Condon R.H., Stock C.A. et al. Gelatinous zooplankton-mediated carbon flows in the global oceans: a data-driven modeling study. Glob. Biogeochem. Cycles, 2020, vol. 34, no. 9, e2020GB006704.

5. Brotz L., Cheung W.W.L., Kleisner K. et al. Increasing jellyfish populations: trends in Large Marine Ecosystems. Hydrobiol., 2012, no. 690, pp. 3-20.

6. Duarte C.M., Pitt K.A., Lucas C.H. et al. Is global ocean sprawl a cause of jellyfish blooms? Front. Ecol. Environm., 2012, vol. 11, no. 2, pp. 91-97.

7. Duarte A.K., Kinas P.G., Muxagate E. et al. Zooplankton biomass distribution in the Subtropical Southwestern Atlantic Ocean: relationships with environmental factors and chlorophyll a. Pan-American J. Aquat. Sci., 2014, vol. 9, no. 4, pp. 239-261.

8. Heneghan R., Everett J., Blanchard J. et al. Climate driven zooplankton shifts could cause global declines in food quality for fish. Res. Square, 2021, doi:https://doi.org/10.2123/rs.3rs-953268/v1.

9. Pauly D., Graham W.M., Libralato S. et al. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiol., 2009, vol. 616, pp. 67-85.

10. Purcell J.E., Uye S., Lo W.T. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar. Ecol. Progr. Ser., 2007, vol. 350, pp. 153-174.

11. Richardson A.J., Bakun A., Hays G.C. et al. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol. Evolut., 2009, no. 24, pp. 312-322.

12. Lucas C.H., Jones D.O.B., Hollyhead C.J. et al. Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Global Ecol. Biogeogr., 2014, doi:https://doi.org/10.1111/geb.12169.

13. Moriarty R., O’Brien T.D. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data, 2013, no. 5, pp. 45-55.

14. O’Brien T.D. COPEPOD: A global plankton database. U.S.Dep. Commerce, NOAA Tech. Memo., 2005, NMFS-F/SPO-73, 136 p.

15. Wiebe P. H. Functional regression equations for zooplankton displacement volume, wet weight, dry weight, and carbon. A correction. Fish. Bull., 1988, no. 86, pp. 833-835.

16. Zagorodnyaya Yu.A., Piontkovski S.A., Gubanov V. Pelagic ecosystem of the Black Sea goes gelatinous. Mar. Biol. Res., 2023 (In Press).

17. Oh S., Kim K-Y, Oh H-J. et al. Spatio-temporal distribution of giant jellyfish Nenopilema nomurai. Water, 2022, vol. 14, no. 8, p. 2883, doi:https://doi.org/10.3390/w14182883.

18. Yoon E.A., Cha C.P., Hwang D.J. et al. Inter-annual occurrence variation of the large jellyfish Nemopilema nomurai due to the changing marine environment in the East China Sea. Bull. Korean Soc. Fish. Technol., 2012, no. 48, pp. 242-255.

19. Mills C.E. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiol., 2001, no. 451, pp. 55-62.

20. Chust G., Allen I., Bopp L. et. al. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob.Change Biol., 2014, vol. 20, no. 7, pp. 2124-2139.

21. Lotze H.K., Tittenzor D.P., Bryndum-Buchholz A. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. PNAS, 2019, vol. 116, no. 26, pp. 12907-12912.

22. Sherman K. Toward Ecosystem-Based Management (EBM) of the World’s Large Marine Ecosystems During Climate Change. Envir. Developm., 2014, iss. 11, pp. 43-66.

23. Fanning L., Mahon R., Baldwin K. et al. Transboundary Waters Assessment Programme (TWAP) Assessment of Governance Arrangements for the Ocean, Transboundary Large Marine Ecosystems. IOC-UNESCO, Paris. IOC Techn. Ser., 2015, vol. 1, no. 119, 80 p.

24. Behrenfeld M.J., O’Malley R.T., Boss E.S. et al. Revaluating ocean warming impacts on global phytoplankton. Nature Climate Change, 2015, no. 6, pp. 323-330.

25. Boero F., Brotz L., Gibbons M.J. et al. Impacts and effects of ocean warming on jellyfish. In: Laffoley D, Baxter J.M. (Eds.). Explaining Ocean Warming: Causes, Scale, Effects and Consequences. Gland, IUCN, 2016, pp. 213-237.

26. Condon R.H., Duarte C.M., Pitt K.A. et al. Recurrent jellyfish blooms are a consequence of global oscillations. PNAS, 2013, vol. 110, no. 3, pp. 1000-1005.

27. Piontkovski S.A., Serikova I.M. Fading bioluminescence of the tropical Atlantic Ocean. Luminescence, 2022, no. 1, doi:https://doi.org/10.1002/bio.4188.

28. Roemmich D., McGowan J. Climatic warming and the decline of zooplankton in the California Current. Sci. New Ser., 1955, vol. 267, no. 5202, pp. 1324-1326.

29. O’Brien T.D., Wiebe P.H., Falkenhaug T. Introduction. Time series data analysis and visualization. ICES Coop. Rep., 2013, no. 318, pp. 1-208.

30. O’Rielly J. Status and trends in primary productivity and chlorophyll from 1996 to 2014 in Large Marine Ecosystems and the Western Pacific Warm Pool, based on data from satellite ocean color sensors. IOC Techn. Ser., 2017, no. 120, pp. 1-122.

31. Capuzzo E., Lynam C.P., Barry J. et al. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Global Change Biol., 2018, no. 24, e352-364.

32. Xie F., Tao Z., Zhou X. et al. Spatial and temporal variations of particulate organic carbon sinking flux in Global Ocean from 2003 to 2018. Remote Sensing, 2019, vol.11, no. 24, 2941, doi:https://doi.org/10.3390/rs11242941.


Login or Create
* Forgot password?