EXCITATIONS OF PYRONIN Y AND PYRONIN B DYES IN AQUEOUS SOLUTION: COMPARATIVE THEORETICAL ANALYSIS
Abstract and keywords
Abstract (English):
To elucidate the effect of side groups on the excitation of xanthene dyes, pyronin Y (PY) and pyronin B (PB) were studied by DFT/TD-DFT. The calculation results were compared with each other, as well as with the data for the acridine red dye previously studied. The O3LYP/6-31++G(d,p)/IEFPCM theory level reproduced well the experimental spectra of PY and PB aqueous solutions. According to calculations, the short-wavelength shoulders of these spectra are caused by vibronic transitions. The side groups significantly affect the set of vibronic transitions. The photoexcitation significantly changes the intensities of IR vibrations. The side groups of these xanthene dyes (aminodimethyl/aminodiethyl) strongly influence the vibrations of their chromophores. HOMOs cover the side groups of both dyes to a greater extent compared to LUMOs. The configurations of both frontier orbitals around the chromophores are identical for PY and PB. The dipole moment of the dye molecules in the excited state turned out to be greater than in the ground state. In the ground state, the dipole moment of the PB is 2.5 times greater than that of the PY, and in the excited states, it is 1.7 times less. The transition moments of PY and PB are almost identical to each other. Considering site-specific solute-solvent interactions in the form of an explicit assignment of water molecules that form strong hydrogen bonds with the dye cations was performed.

Keywords:
TD-DFT, vibronic transitions, aqueous solution, pyronin Y, pyronin B, absorption spectrum
Text
Publication text (PDF): Read Download
References

1. Wright P. Xanth ene Dyes in Kirk-Othmer. Encyclopedia of Chemical Technology, 2000.

2. Kurnick N.B. Methyl green-pyronin; basis of selective staining of nucleic acids. J. Gen. Physiol., 1950, vol. 33, pp. 243-264.

3. Darzynkiewicz Z., Kapuscinski J., Traganos F., Crissman H.A. Application of Pyronin Y(G) in Cytochemistry of Nucleic Acidsl. Cytometry, 1987, vol. 8, pp. 138-145.

4. Tomov T.C. Pyronin G as a fluorescent probe for quantitative determination of the membrane potential of mitochondria. J. Biochem. Biophys. Methods, 1986, vol.13, pp. 29-38.

5. Essawy A.A., Attia M.S. Novel application of pyronin Y fluorophore as high sensitive optical sensor of glucose in human serum. Talanta, 2013, vol. 107, p. 18-24.

6. Balraju P., Janu Y., Roy M.S., Sharma G.D. Dye Sensitized Solar Cell Based On Pyronin G Dye and TiO2. AIP Conf. Proc., 2008, vol. 1004, pp. 135-140.

7. Balraju P., Suresh P., Kumar M., Roy M.S., Sharma G.D. Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye. J. Photochem. Photobiol. A, 2009, vol. 206, pp. 53-63.

8. Muller W., Crothers D.M. Interactions of Heteroaromatic Compounds with Nucleic Acids. 1. The Influence of Heteroatoms and Polarizability on the Base Specificity of Intercalating Ligands. Eur. J. Biochem., 1975, vol. 54, pp. 267-277.

9. Kapuscinski J. Interactions of Nucleic Acids with Fluorescent Dyes: Spectral Properties of Condensed Complexes. J. Histochem. Cytochem., 1990, vol. 38, pp. 1323-1329.

10. Kapuscinski J., Darzynkiewicz Z. Interactions of Pyronin Y(G) With Nucleic Acids. Cytometry, 1987, vol. 8, pp. 129-137.

11. Salci A., Toprak M. Spectroscopic investigations on the binding of Pyronin Y to human serum albumin. J. Biomol. Struct. Dyn., 2017, vol. 35, pp. 8-16.

12. Bordello J., Reija B., Al-Soufi W., Novo M. Host-Assisted Guest Self-Assembly: Enhancement of the Dimerization of Pyronines Y and B by γ-Cyclodextrin. ChemPhysChem, 2009, vol. 10, pp. 931-939.

13. Grauer Z., Grauer G.L., Avnir D., Yariv S. Metachromasy in Clay Minerals. Sorption of Pyronin Y by Montmorillonite and Laponite. J. Chem. Soc., Faraday Trans., 1987, vol 83, pp. 1685-1701.

14. Senol A.M., Metin O., Acar M., Onganer Y., Meral K. The interaction of fluorescent Pyronin Y molecules with monodisperse silver nanoparticles in chloroform. J. Mol. Structure, 2016, vol. 1103, pp. 212-216.

15. Arik M., Onganer Y. Molecular excitons of Pyronin B and Pyronin Y in colloidal silica suspension. Chem. Phys. Lett., 2003, vol. 375, pp. 126-133.

16. Senol A.M., Metin O., Onganer Y. A facile route for the preparation of silver nanoparticles-graphene oxide nanocomposites and their interactions with pyronin Y dye molecules. Dyes Pigments, 2019, vol. 162, pp. 926-933.

17. Gianneschi L.P., Kurucsev T. Derivation and Interpretation of the Spectra of Aggregates. Part 3.-Prediction Analytical Study of the Spectrum of Pyronine Y in Aqueous Solution. J. Chem. Soc., 1974, vol. 70, pp. 1334-1342.

18. Gianneschi L.P., Cant A., Kurucsev T. Derivation and interpretation of the spectra of aggregates. J. Chem. Soc., 1977, vol. 73, pp. 664-668.

19. Lee B.G., Kim K.J. Spectroscopic Characterization on the Aggregation Behavior of Pyronin G with Tetraphenylborate anion. Anal. Sci. Technol., 1995, vol. 8, pp. 47-53.

20. Epelde-Elezcano N., Martinez-Martinez V., Duque-Redondo E., Temino I., Manzano H., López-Arbeloa I. Strategies for modulating the luminescence properties of pyronin Y dye-clay films: an experimental and theoretical study. Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 8730-8738.

21. Meral K., Yilmaz N., Kaya M., Tabak A., Onganer Y. The molecular aggregation of pyronin Y in natural bentonite clay suspension. J. Luminesc., 2011, vol. 131, pp. 2121-2127.

22. Sinoforoglu M., Gur B., Arik M., Onganer Y., Meral K. Graphene oxide sheets as a template for dye assembly: graphene oxide sheets induce H-aggregates of pyronin (Y) dye. RSC Adv., 2013, vol.3, pp. 11832-11838.

23. Fujiki K.O.N., Iwanaga C., Koizumi M. Some spectral studies of the aqueous solution of pyronine G. Bull. Chem. Soc. Jpn, 1962, vol. 35, pp. 185-193.

24. Arik M., Meral K., Onganer Y. Effect of surfactants on the aggregation of pyronin B and pyronin Y in aqueous solution. J. Luminesc., 2009, vol.129, pp. 599-604.

25. Arik M., Kassa S.B., Onganer Y. Molecular aggregates of pyronin dyes with polyelectrolyte polystyrene sulfonate (PSS) in aqueous solution. J. Photochem. Photobiol. A, 2020, vol. 391, p. 112309.

26. Meral K., Erbil H.Y., Onganer Y. A spectroscopic study of water-soluble pyronin B and pyronin Y in Langmuir-Blodgett films mixed with stearic acid. Appl. Surf. Sci., 2011, vol. 258, pp. 1605-1612.

27. Zhang X.-F., Zhang J., Lu X. The Fluorescence Properties of Three Rhodamine Dye Analogues: Acridine Red, Pyronin Y and Pyronin B. J. Fluoresc., 2015, vol. 25, pp. 1151-1158.

28. Baraka M.E., Deumie M., Viallet P., Lampidis T.J. Fluorimetric studies of solutions of pyronin dyes: equilibrium constants in water and partition coefficients in organic-solvent-water systems. J. Photochem. Photobiol. A, 1991, vol. 56, pp. 295-311.

29. Celebi N., Arik M., Onganer Y. Analysis of fluorescence quenching of pyronin B and pyronin Y by molecular oxygen in aqueous solution. J. Luminesc., 2007, vol. 126, pp. 103-108.

30. Rowe P.B. Spectrophotometry of dyes 1. Methyl green. 2. Pyronin. Stain Tech., 1953, vol. 28, pp. 265-273.

31. Beser B.M., Onganer Y., Arik M. Photophysics and photodynamics of Pyronin Y in n‐alcohols. J. Luminesc., 2018, vol. 33, pp. 1394-1400.

32. Jakobsen P., Lyon H., Treppendahl S. Spectrophotometric characteristics and assay of pure pyronin Y. Histochemistry, 1984, vol 81, pp. 99-101.

33. Gur B., Meral K. The effect of poly (vinyl alcohol) on the photophysical properties of pyronin dyes in aqueous solution: A spectroscopic study. Spectrochim. Acta A, 2013 vol. 101, pp. 306-313.

34. Savarese M., Aliberti A., De Santo I., Battista E., Causa F., Netti P.A, Rega N. Fluorescence Lifetimes and Quantum Yields of Rhodamine Derivatives: New Insights from Theory and Experiment. J. Phys. Chem. A, 2012, vol. 116, pp. 7491-7497.

35. Zhou P. Why the lowest electronic excitations of rhodamines are overestimated by time-dependent density functional theory. Int. J. Quantum Chem, 2018, p. 25780.

36. Kulesza A.J., Titov E., Daly S., Wlodarczyk R., Megow J., Saalfrank P., Choi C.M., MacAleese L., Antoine R., Dugourd P. Excited States of Xanthene Analogues: Photofragmentation and Calculations by CC2 and Time-Dependent Density Functional Theory. ChemPhysChem, 2016, vol. 17, pp. 3129-3138.

37. Cossi M., Rega N., Scalmani G., Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem., 2003, vol. 24, pp. 669-681.

38. Adamo C., Jacquemin D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev., 2013, vol. 42, pp. 845-856.

39. Charaf-Eddin A., Planchat A., Mennucci B., Adamo C., Jacquemin D. Choosing a Functional for Computing Absorption and Fluorescence Band Shapes with TD-DFT. J. Chem. Theory Comput., 2013, vol. 9 pp. 2749-2760.

40. Kostjukov V.V. Vibronic absorption spectra and excited states of acridine red dye in aqueous solution: TD-DFT/DFT study. Z. fur Natur. A, 2022, vol. 77, pp. 207-215.

41. Alia J.D., Flack J.A. Unspecified verticality of Franck-Condon transitions, absorption and emission spectra of cyanine dyes, and a classically inspired approximation. RSC Adv., 2020, vol. 10, pp. 43153-43167.

42. Tomasi J., Mennucci B., Cammi R. Quantum mechanical continuum solvation models. Chem. Rev., 2005, vol. 105, pp. 2999-3093.

43. Baiardi A., Bloino J., Barone V. General Time Dependent Approach to Vibronic Spectroscopy Including Franck-Condon, Herzberg-Teller, and Duschinsky Effects. J. Chem. Theory Comput., 2013, vol. 9, pp. 4097-4115.

44. Frisch M.J. et al. Gaussian 16, Revision C.01, Inc., Wallingford CT, 2016.

45. Condon E.U. Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev., 1928, vol. 32, pp. 858-872.

46. Scalmani G., Frisch M.J., Mennucci B., Tomasi J., Cammi R., Barone V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys., 2006, vol. 124, p. 94107.

47. Reed A.E., Curtiss L.A., Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev., 1988, vol. 88, pp. 899-926.

48. Dennington R., Keith T.A., Millam J.M. GaussView, Version 6.1, Semichem Inc., Shawnee Mission KS, 2016.

49. Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev., 1994, vol. 94, pp. 2319-2358.

50. Zhao G.J., Han K.L. Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen‐bond strengthening and weakening. ChemPhysChem, 2008, vol. 9, pp. 1842-1846.

51. Zhao G.-J., Han K.-L. Hydrogen Bonding in the Electronic Excited State. Acc. Chem. Res., 2012, vol. 45, pp. 404-413.


Login or Create
* Forgot password?