Красноярск, Красноярский край, Россия
С помощью адсорбции экстраклеточных оксидаз (глюкозооксидаза и пероксидазы) светящегося гриба Neonothopanus nambi на модифицированные наноалмазы (МНА) детонационного синтеза сконструирована бифункциональная индикаторная система для обнаружения глюкозы и фенола в водной среде. Установлено, что изучаемые ферменты прочно связываются частицами МНА и проявляют после этого каталитическую активность. В модельных экспериментах in vitro показано, что полученная индикаторная система (комплекс МНА-ферменты) может многократно использоваться для тестирования глюкозы и фенола и проявляет функциональную активность в течение длительного (до 1 месяца) хранения при 4 °С. Полученные данные открывают перспективы конструирования на основе частиц МНА и ферментов высших грибов нового класса многоразовых индикаторных тест-систем для медицинской и экологической аналитики.
наноалмазы, светящийся гриб, мицелий, β-глюкозидаза, глюкозооксидаза, пероксидаза, индикаторная система
1. Artiles M., Rout C.S., Fisher T.S. Graphene-based hybrid materials and devices for biosensing. Adv. Drug Deliv. Rev., 2011, vol. 63, pp. 1352-1360.
2. Zamborini F.P., Bao L., Dasari R. Nanoparticles in measurement science. Anal. Chem., 2012, vol. 84, pp. 541-576.
3. Fisher P., Fadley C.S. Probing nanoscale behavior of magnetic materials with soft X-ray spectroscopy. Nanotech. Rev., 2012, vol. 1, pp. 5-15.
4. Lad A., Agrawal Y.K. Nanodevices for monitoring toxicological behavior of therapeutic agent. Rev. Nanosci. Nanotech., 2012, vol. 1, pp. 217-227.
5. Ronzhin N.O., Baron A.V., Mamaeva E.S., Puzyr A.P., Bondar V.S. Nanodiamond-based tests systems for biochemical determination of glucose and cholesterol. J. Biomater. Nanobiotech., 2013, vol. 4, pp. 242-246.
6. Hatamie A., Zargar B., Jalali A. Copper nanoparticles: a new colorimetric probe for quick, naked-eye detection of sulfide ions in water samples. Talanta., 2014, vol. 121, pp. 234-238.
7. Yin M., Zhao L., Wei Q., Li H. Rapid colorimetric detection of melamine by H2O2-Au nanoparticles. RSC Adv., 2015, vol. 5, pp. 32897-32901.
8. Wang Y., Hu S. Applications of carbon nanotubes and graphene for electrochemical sensing of environmental pollutants. J. Nanosci. Nanotechnol., 2016, vol. 16, pp. 7852-7872.
9. Ciaurriz P., Bravo E., Hamad-Schifferli K. Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates. J. Colloid Interface Sci., 2014, vol. 414, pp. 73-81.
10. Yang Н., Wei W., Liu S. Monodispersed silica nanoparticles as carrier for co-immobilization of bi-enzyme and its application for glucose biosensing. Spectrochim. Acta. Part A, 2014, vol. 125, pp. 183-188.
11. Tan H., Guo S., Dinh N., Luo R., Jin L., Chen C. Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions. Nat. Commun., 2017, vol. 8, p. 663.
12. Hofrichter M., Ullrich R., Pecyna M.J., Liers C., Lunde T. New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol., 2010, vol. 87, pp. 871-897.
13. Wong C., Wong K., Chen X. Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol., 2008, vol. 78, pp. 927-938.
14. Puzyr A.P., Bondar V.S. Method of production of nanodiamonds of explosive synthesis with an increased colloidal stability. RU Patent no. 2252192, 2005, bull. no. 14.
15. Puzyr A.P., Baron A.V., Purtov K.V., Bortnikov E.V., Skobelev N.N., Mogilnaya O.A., Bondar V.S. Nanodiamonds with novel properties: a biological study. Diam. Relat. Mater., 2007, vol. 16, pp. 2124-2128.
16. Gibson N., Shenderova O., Luo T.J.M., Moseenkov S., Bondar V., Puzyr A., Purtov K., Fitzgerald Z., Brenner D.W. Colloidal stability of modified nanodiamond particles. Diam. Relat. Mater., 2009, vol. 18, pp. 620-626.
17. Puzyr A.P., Burov A.E., Bondar V.S. Modification and comparative study of commercial nanodiamonds. Full. Nanotub. Carb. Nanostruct., 2015, vol. 23, pp. 93-97.
18. Bondar V.S., Pozdnyakova I.O., Puzyr A.P. Applications of nanodiamonds for separation and purification of proteins. Phys. Solid State., 2004, vol. 46, pp. 758-760.
19. Puzyr A.P., Purtov K.V., Shenderova O.A., Luo M., Brenner D.W., Bondar V.S. The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Dokl. Biochem. Biophys., 2007, vol. 417, pp. 299-301.
20. Purtov K.V., Burakova L.P., Puzyr A.P., Bondar V.S. Interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation. Nanotechnology, 2008, vol. 19, pp. 1-3.
21. Baron A.V., Osipov N.V., Olkhovskiy I.A., Puzyr A.P., Bondar V.S. Binding the immunoglobulins of human serum by nanodiamonds. Dokl. Biochem. Biophys., 2014, vol. 457, pp. 158-159.
22. Mogilnaya O.A., Ronzhin N.O., Artemenko K.S., Bondar V.S. Morphological properties and levels of extracellular peroxidase activity and light emission of the basidiomycete Armillaria borealis treated with β-glucosidase and chitinase. Mycosphere, 2017, vol. 8, pp. 649-659.
23. Daniel G., Nilsson T., Pettersson B. Intra- and extracellular localization of lignin peroxidase during the degradation of solid wood and wood fragments by Phanerochaete chrysosporium by using transmission electron microscopy and immuno-gold labeling. Appl. Environ. Microbiol., 1989, vol. 55, pp. 871-881.
24. Ruel K., Joseleau J.-P. Involvement of an Extracellular Glucan Sheath during Degradation of PopulusWood by Phanerochaete chrysosporium. Appl. Environ. Microbiol., 1991, vol. 57, pp. 374-384.
25. Takano M., Hayashi N., Nakamura M., Yamaguchi M. Extracellular peroxidase reaction at hyphal tips of white-rot fungus Phanerochaete crassa WD1694 and in fungal slime. J. Wood Sci., 2009, vol. 55, pp. 302-307.
26. Latge J.-P., Beauvais A. Functional duality of the cell wall. Curr. Opin. Microbiol., 2014, vol. 20, pp. 111-117.
27. Bowman S.M., Free S.J. The structure and synthesis of the fungal cell wall. BioEssays, 2006, vol. 28, pp. 799-808.
28. Ene I.V., Walker L.A., Schiavone M., Lee K.K., Martin-Yken H., Dague E., Gow N.A.R., Munro C.A., Brown A.J.P. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. mBio, 2015, vol. 6, e00986-15 (2015). doihttps://doi.org/10.1128/mBio.00986-15
29. Barrasa J.M., Gutierrez A., Escaso V., Gullen F., Martinez M.I., Martinez A.T. Electron and fluorescent microscopy of extracellular glucan and aryl-alcohol oxidase during wheat-straw degradation by Pleurotus eryngii. Appl. Environ. Microbiol., 1998, vol. 64, pp. 325-332.