Krasnoyarsk, Krasnoyarsk, Russian Federation
A bifunctional indicator system for glucose and phenol detection has been constructed by adsorption of extracellular oxidases (glucose oxidase and peroxidases) of luminous fungus Neonothopanus nambi onto modified nanodiamonds (MND) synthesized by detonation. It has been found that the studied enzymes are strongly bound by MND particles and exhibit catalytic activity. Model experiments in vitro have shown that created indicator system (MND-enzymes complex) can be repeatedly used for glucose and phenol testing and exhibit their activity after storage at 4 °C for a long time (up to 1 month). The data obtained open the prospects for developing a new class of reusable multifunctional indicating and diagnostic test-systems on the basis of MND particles and higher fungi enzymes for medical and ecological analytics.
nanodiamonds, luminous fungus, mycelium, β-glucosidase, glucose oxidase, peroxidase, indicator system
1. Artiles M., Rout C.S., Fisher T.S. Graphene-based hybrid materials and devices for biosensing. Adv. Drug Deliv. Rev., 2011, vol. 63, pp. 1352-1360.
2. Zamborini F.P., Bao L., Dasari R. Nanoparticles in measurement science. Anal. Chem., 2012, vol. 84, pp. 541-576.
3. Fisher P., Fadley C.S. Probing nanoscale behavior of magnetic materials with soft X-ray spectroscopy. Nanotech. Rev., 2012, vol. 1, pp. 5-15.
4. Lad A., Agrawal Y.K. Nanodevices for monitoring toxicological behavior of therapeutic agent. Rev. Nanosci. Nanotech., 2012, vol. 1, pp. 217-227.
5. Ronzhin N.O., Baron A.V., Mamaeva E.S., Puzyr A.P., Bondar V.S. Nanodiamond-based tests systems for biochemical determination of glucose and cholesterol. J. Biomater. Nanobiotech., 2013, vol. 4, pp. 242-246.
6. Hatamie A., Zargar B., Jalali A. Copper nanoparticles: a new colorimetric probe for quick, naked-eye detection of sulfide ions in water samples. Talanta., 2014, vol. 121, pp. 234-238.
7. Yin M., Zhao L., Wei Q., Li H. Rapid colorimetric detection of melamine by H2O2-Au nanoparticles. RSC Adv., 2015, vol. 5, pp. 32897-32901.
8. Wang Y., Hu S. Applications of carbon nanotubes and graphene for electrochemical sensing of environmental pollutants. J. Nanosci. Nanotechnol., 2016, vol. 16, pp. 7852-7872.
9. Ciaurriz P., Bravo E., Hamad-Schifferli K. Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates. J. Colloid Interface Sci., 2014, vol. 414, pp. 73-81.
10. Yang N., Wei W., Liu S. Monodispersed silica nanoparticles as carrier for co-immobilization of bi-enzyme and its application for glucose biosensing. Spectrochim. Acta. Part A, 2014, vol. 125, pp. 183-188.
11. Tan H., Guo S., Dinh N., Luo R., Jin L., Chen C. Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions. Nat. Commun., 2017, vol. 8, p. 663.
12. Hofrichter M., Ullrich R., Pecyna M.J., Liers C., Lunde T. New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol., 2010, vol. 87, pp. 871-897.
13. Wong C., Wong K., Chen X. Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol., 2008, vol. 78, pp. 927-938.
14. Puzyr A.P., Bondar V.S. Method of production of nanodiamonds of explosive synthesis with an increased colloidal stability. RU Patent no. 2252192, 2005, bull. no. 14.
15. Puzyr A.P., Baron A.V., Purtov K.V., Bortnikov E.V., Skobelev N.N., Mogilnaya O.A., Bondar V.S. Nanodiamonds with novel properties: a biological study. Diam. Relat. Mater., 2007, vol. 16, pp. 2124-2128.
16. Gibson N., Shenderova O., Luo T.J.M., Moseenkov S., Bondar V., Puzyr A., Purtov K., Fitzgerald Z., Brenner D.W. Colloidal stability of modified nanodiamond particles. Diam. Relat. Mater., 2009, vol. 18, pp. 620-626.
17. Puzyr A.P., Burov A.E., Bondar V.S. Modification and comparative study of commercial nanodiamonds. Full. Nanotub. Carb. Nanostruct., 2015, vol. 23, pp. 93-97.
18. Bondar V.S., Pozdnyakova I.O., Puzyr A.P. Applications of nanodiamonds for separation and purification of proteins. Phys. Solid State., 2004, vol. 46, pp. 758-760.
19. Puzyr A.P., Purtov K.V., Shenderova O.A., Luo M., Brenner D.W., Bondar V.S. The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Dokl. Biochem. Biophys., 2007, vol. 417, pp. 299-301.
20. Purtov K.V., Burakova L.P., Puzyr A.P., Bondar V.S. Interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation. Nanotechnology, 2008, vol. 19, pp. 1-3.
21. Baron A.V., Osipov N.V., Olkhovskiy I.A., Puzyr A.P., Bondar V.S. Binding the immunoglobulins of human serum by nanodiamonds. Dokl. Biochem. Biophys., 2014, vol. 457, pp. 158-159.
22. Mogilnaya O.A., Ronzhin N.O., Artemenko K.S., Bondar V.S. Morphological properties and levels of extracellular peroxidase activity and light emission of the basidiomycete Armillaria borealis treated with β-glucosidase and chitinase. Mycosphere, 2017, vol. 8, pp. 649-659.
23. Daniel G., Nilsson T., Pettersson B. Intra- and extracellular localization of lignin peroxidase during the degradation of solid wood and wood fragments by Phanerochaete chrysosporium by using transmission electron microscopy and immuno-gold labeling. Appl. Environ. Microbiol., 1989, vol. 55, pp. 871-881.
24. Ruel K., Joseleau J.-P. Involvement of an Extracellular Glucan Sheath during Degradation of PopulusWood by Phanerochaete chrysosporium. Appl. Environ. Microbiol., 1991, vol. 57, pp. 374-384.
25. Takano M., Hayashi N., Nakamura M., Yamaguchi M. Extracellular peroxidase reaction at hyphal tips of white-rot fungus Phanerochaete crassa WD1694 and in fungal slime. J. Wood Sci., 2009, vol. 55, pp. 302-307.
26. Latge J.-P., Beauvais A. Functional duality of the cell wall. Curr. Opin. Microbiol., 2014, vol. 20, pp. 111-117.
27. Bowman S.M., Free S.J. The structure and synthesis of the fungal cell wall. BioEssays, 2006, vol. 28, pp. 799-808.
28. Ene I.V., Walker L.A., Schiavone M., Lee K.K., Martin-Yken H., Dague E., Gow N.A.R., Munro C.A., Brown A.J.P. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. mBio, 2015, vol. 6, e00986-15 (2015). doihttps://doi.org/10.1128/mBio.00986-15
29. Barrasa J.M., Gutierrez A., Escaso V., Gullen F., Martinez M.I., Martinez A.T. Electron and fluorescent microscopy of extracellular glucan and aryl-alcohol oxidase during wheat-straw degradation by Pleurotus eryngii. Appl. Environ. Microbiol., 1998, vol. 64, pp. 325-332.