Аннотация и ключевые слова
Аннотация (русский):
В статье представлен обзор основных полисахаридных рецепторов - SR, CTLR, TLR, CR, NLR, LacCer. Описаны некоторые биологические активности полисахаридов, преимущественно - иммунологические, противоопухолевые, апоптотические, а также некоторые другие. Обсуждается роль рецепторов и моносахаридных последовательностей полисахаридов в регуляции иммунного ответа. Описаны возможные типы сигналинга и роль полисахаридов в нем. Рассмотрена возможность формирования метастабильных состояний клетки, возникающие за счет возникновения разнонаправленных внутриклеточных сигнальных каскадов при взаимодействии рецепторов и комплексных полисахаридных лигандов. Предполагается, что клетка, находящаяся в особом состоянии - бифуркационном, способна «совершать выбор» между различными типами ответов: апоптоз, пролиферация, арест клеточного цикла и другими. Приведены примеры активации различных сигнальных путей под действием полисахаридов, в том числе - возможности перехода трансформированных клеток в бифуркационное состояние.

Ключевые слова:
полисахариды, гликаны, бифуркационное состояние, сигналинг, рецепторы
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Lowe J.B. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol., 2003, vol. 15, no. 5, pp. 531-538.

2. Lowe J.B., Marth J.D. A genetic approach to mammalian glycan function. Annu. Rev. Biochem., 2003. vol. 72, pp. 673-691.

3. Ohtsubo K., Marth J.D. Glycosylation in cellular mechanisms of health and disease. Cell, 2006, vol. 126, no. 5, pp. 855-867.

4. Geier H., Celli J. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect. Immun., 2011, vol. 79, no. 6, pp. 2204-2214.

5. Li J., Lee D.S., Madrenas J. Evolving bacterial envelopes and plasticity of TLR2-dependent responses: basic research and translational opportunities. Frontiers in Immunology, 2013, vol. 4, pp. 347.

6. Marakalala M.J., Williams D.L., Hoving J.C. [et al.] Dectin-1 plays a redundant role in the immunomodulatory activities of β-glucan-rich ligands in vivo. Microbes Infect., 2013, vol. 15, pp. 511-515.

7. Taghavi M., Mortaz E., Khosravi A. [et al.] Zymosan attenuates melanoma growth progression, increases splenocyte proliferation and induces TLR-2/4 and TNF-α expression in mice. J. Inflamm., 2018, vol. 15, no. 5, pp. 1-10, e-pub.

8. Dillon S., Agrawal S., Banerjee K. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest., 2006, vol. 116, no. 4, pp. 916-928.

9. Sakashita Y., Hiyama E., Imamura Y. [et al.] Generation of pro-inflammatory and anti-inflammatory cytokines in the gut zymosan-induced peritonitis. Hiroshima J. Med. Sci., 2000, vol. 49, no. 1, pp. 43-48.

10. Chan G.C.-F., Chan W.K., Sze D.M.-Y. The effects of β-glucans on human immune and cancer cells. J. of hem. and onc., 2009, vol. 2, p. 25.

11. Toussi D.N., Massari P. Immune adjuvant effect of molecularly-defined Toll-Like receptor ligands. Vaccines, 2014, vol. 2, no. 2, pp. 323-353.

12. Kawai T., Akira S. Role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, vol. 11, no. 5, pp. 373-384.

13. Lester S.N., Li K. Toll-like receptors in antiviral innate immunity. J. Mol. Biol., 2014, vol. 426, no. 6, pp. 1246-1264.

14. Li X., Jiang S., Tapping R.I. Toll-like receptor signaling in cell proliferation and survival. Cytokine, 2010, vol. 49, no. 1, pp. 1-9, epub.

15. Oliveira-Nascimento L., Massari P., Wetzler L.M. The Role of TLR2 in Infection and Immunity. Front. Immunol., 2012, vol. 3, no. 79, pp. 1-17. Epub.

16. Buwitt-Beckmann U., Heine H., Wiesmuller K.H. [et al.] Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur. J. Immunol., 2005, vol. 35, pp. 282-289.

17. Frodermann V., Chau T.A., Sayedyahossein S. [et al.] A modulatory interleukin-10 response to staphylococcal peptidoglycan prevents Th1/Th17 adaptive immunity to Staphylococcus aureus. J. Infect. Dis., 2011, vol. 204, pp. 253-262.

18. Bulut Y., Faure E., Thomas L. [et al.] Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J. Immunol., 2001, vol. 167, no. 2, pp. 987-994.

19. Brown J., Wang H., Hajishengallis G.N., Martin M. TLR-signaling networks an integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res., 2011, vol. 90, no. 4. pp. 417-427.

20. Chau T.A., McCully M.L., Brintnell W. [et al.] Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen induced T cell activation and prevent toxic shock syndrome. Nat. Med., 2009, vol. 15, pp. 641-648.

21. Depaolo R.W., Tang F., Kim I. [et al.] Toll-like receptor 6 drives differentiation of tolerogenic dendritic cells and contributes to LcrV mediated plague pathogenesis. Cell host microbe, 2008, vol. 4, pp. 350-361.

22. Uematsu S., Akira S. Toll-like receptors (TLRs) and their Ligands. Handb. Exp. Pharmacol., 2008, vol. 183, pp. 1-20.

23. Tatematsu M., Yoshida R., Morioka Y. [et al.] Raftlin controls lipopolysaccharide-induced TLR4 internalization and TICAM-1 signaling in a cell type-specific manner. J. Immunol., 2016, vol. 196, no. 9, pp. 3865-3876.

24. Zhou X.-L., Yang M., Xue B.-G. [et al.] Anti-inflammatory action of Ginkgo Biloba leaf polysaccharide via TLR4/NF-κb signaling suppression. Biomedical research, 2014, vol. 25, no. 4, pp. 449-454.

25. Rajaiah R., Perkins D.J., Ireland D.D.C., Vogela S.N. Immunology and inflammation CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance. Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 27, pp. 8391-8396.

26. Zhang S., Nie S., Huang D., Huang J. [et al.] Polysaccharide from Ganoderma atrum evokes antitumor activity via Toll-like receptor 4-mediated NF-κB and mitogen-activated protein kinase signaling pathways. J. Agric. Food chem., 2013, vol. 61, no. 15, pp. 3676-3682.

27. Yu Q., Nie S.-P., Wang J.-Q. [et al.] Signaling pathway involved in the immunomodulatory effect of Ganoderma atrum polysaccharide in spleen lymphocytes. J. Agric. Food chem., 2015, vol. 63, no. 10, pp. 2734-2740.

28. Kumar H., Kawai T., Akira S. Pathogen recognition be the innate immune system. Int. Rev. Immunol., 2011, vol. 30, pp. 16-34.

29. Rubino S.J., Selvanantham T., Girardin S.E., Philpott D.J. NOD-like receptors in the control of intestinal inflammation. Curr. Opin. Immunol., 2012, vol. 24, pp. 398-404.

30. Schneider M., Zimmermann A.G., Roberts R.A. [et al.] The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nat. Immunol., 2006, vol. 6, pp. 9-20.

31. Selvanantham T., Escalante N.K., Cruz Tleugabulova M. [et al.] NOD1 and NOD2 enhance TLR-mediated invariant NKT cell activation during bacterial infection. The Journal of immunology, 2013, vol. 191, no. 11, pp. 5646-5654.

32. Franchi L., Warner N., Viani K., Nuñez G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev., 2009, vol. 227, no. 1, pp. 106-128.

33. Juárez E., Carranza C., Hernández-Sánchez F. [et al.] Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages. BMC Pulm. Med., 2014, vol. 14, no. 152. pp. 1-11, epub.

34. Tian Z., Liu L., Yang B. Astagalus polysaccharide attenuates murine colitis through inhibiton of the NLRP3 inflammasome. Planta medica, 2016, vol. 83, no. 1, pp. 70-77.

35. Iwabuchi K., Nakayama H., Oizumi A. [et al.] Role of Ceramide from glycosphingolipids and its metabolites in immunological and inflammatory responses in humans (Review). Mediators of Inflammation, 2015, vol. 2015, pp. 1-10.

36. Evans S.E., Hahn P.Y., McCann F. [et al.] Pneumocystis cell wall β-glucans stimulate alveolar epithelial cell chemokine generation through nuclear factor-κB-dependent mechanisms. Am. J. Respir. Cell Mol. Biol., 2005, vol. 32, no. 6, pp. 490-497.

37. Iwabuchi K., Nagaoka I. Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood, 2002, vol. 100, pp. 1454-1464.

38. Akramiene D., Kondrotas A., Didziapetriene J., Kevelaitis E. Effects of β-glucans on the immune system. Medicina (Kaunas), 2007, vol. 43, pp. 597-606.

39. Legentil L., Paris F., Ballet C. [et al.] Molecular interactions of β-(1→3)-glucans with their receptors. Molecules, 2015, vol. 20, pp. 9745-9766.

40. Popa V. Polysaccharides in Medicinal and Pharmaceutical Applications. Smithers Rapra, 2011, 408 p.

41. Nakayama H., Kurihara H., Morita Y.S. [et al.] Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Sci. Signal, 2016, vol. 9, ra101, pp. 1-15.

42. Rice P.J., Kelley J.L., Kogan G. [et al.] Human monocyte scavenger receptors are pattern recognition receptors for (1→3)-β-d-glucans. J. Leukoc. Biol., 2002, vol. 72, pp. 140-146.

43. Yu H., Ha T., Liu L. [et al.] Scavenger receptor A (SR-A) is required for LPS-induced TLR4 mediated NF-κB activation in macrophages. Biochim. Biophys. Acta, 2012, vol. 1823, no. 7, pp. 1192-1198.

44. Větvička V., Novák M. Biology and chemistry of beta glucan: beta glucans - mechanisms of action. Bentham science publishers, 2011, 83 p.

45. Li B., Allendorf D.J., Hansen R. [et al.] Yeast beta-glucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. J. Immunol, 2006, vol. 177, no. 3, pp. 1661-1669.

46. Yan J., Allendorf D.J., Li B. [et al.] The role of membrane complement regulatory proteins in cancer immunotherapy. Advances in experimental medicine and biology, 2008, vol. 8, no. 3, pp. 218-225.

47. Hong F., Yan J., Baran T.J. [et al.] Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. The journal of immunology, 2004, vol. 173, pp. 797-806.

48. Zelensky A.N., Gready J.E. The C-type lectin like domain superfamily. The FEBS J., 2005, vol. 272, pp. 6179-6217.

49. Sancho D., Reise e Sousa C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Ann. Rev. Immunol., 2012, vol. 30, pp. 491-529.

50. Hong W.-P.P., Nguyen S., Young S. [et al.] Identification of the Optimal DC-SIGN Binding Site on Human Immunodeficiency Virus Type 1 gp120. J. Virol., 2007, vol. 81, no. 15, pp. 8325-8336.

51. Hollmig S.T., Ariizumi K., Cruz D.P. Recognition of non-self-polysaccharides by C-type lectin receptors dectin-1 and dectin-2 Jr. Glycobiology, 2009, vol. 19, no. 6, pp. 568-575.

52. Ruiz-Herrera J. Dimorphic fungi: their importance as models for differentiation and fungal pathogenesis. Bentham Science Publishers, 2012, 150 p.

53. van den Berg L.M., Zijlstra-Willems E.M., Richters C.D. [et al.] Dectin-1 activation induces proliferation and migration of human keratinocytes enhancing wound re-epithelization. Cellular immunology, 2014, vol. 289, pp. 49-54.

54. Brown G.D. Dectin-1: A signaling non-TLR pattern-recognition receptor. Nat. Rev. Immunol., 2006, vol. 6, pp. 33-44.

55. Huysamen C., Brown G.D. The fungal pattern-recognition receptor, Dectin-1, and the associated cluster of C-type lectin like receptors. FEMS Microbiol. Lett., 2009, vol. 290, pp. 121-128.

56. Kimberg M., Brown G.D. Dectin-1 and its role in antifungal immunity. Medical mycology, 2008, vol. 46, no. 7, pp. 631-636.

57. Kerrigan A.M., Brown G.D. Syk-coupled C-type lectins in immunity. Trends immunol., 2011, vol. 32, pp. 151-156.

58. Chen H., Cai H., Chen L. [et al.] H. N-glycan-defective breast cancer cells induce a phenotypic switch in polarization of bone marrow-derived macrophages. Clin. Invest. Med., 2011, vol. 34, no. 2, pp. 71-81.

59. Hardison S.E., Brown G.D. C-type lectin orchestrate antifungal immunity. Nat. immunol., 2012, vol. 13, pp. 817-822.

60. Dennehy K.M., Ferwerda G., Faro-Trindade I. [et al.] Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur. J. Immunol., 2008, vol. 38, no. 2, pp. 500-506.

61. Reid D.M., Gow A.R.N., Brown G.D. Pattern recognition: recent insights from Dectin-1. Curr. Opin. Immunol., 2009, vol. 21, no. 1, pp. 30-37.

62. Kerscher B., Willment J.A., Brown G.D. The Dectin-2 family of C-type lectin-like receptors: an update. Int. Immunol., 2013, vol. 25, no. 5, pp. 271-277.

63. Lambert A.A., Gilbert C., Richard M. [et al.] The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood, 2008, vol. 112, no. 4, pp. 1299-1307.

64. Laura A.A., Luke Y.P., Krasimira T.-A. Bifurcation analysis of a two-compartment hippocampal pyramidal cell model. J. Comput. Neurosci., 2016, vol. 41, pp. 91-106.

65. Otte S., Berg S., Luther S., Parlitz U. Bifurcations, chaos, and sensitivity to parameter variations in the Sato cardiac cell model Author links open overlay panel. Communications in nonlinear science and numerical simulation, 2016, vol. 37, pp. 265-281.

66. Generalov E.A., Levashova N.T., Sidorova A.E. [et al.] An autowave model of the bifurcation behavior of transformed cells in response to polysaccharide. Biophysics, 2017, vol. 62, no. 5, pp. 717-721.

67. Stephen T.L., Groneck L., Kalka-Moll W.M. The modulation of adaptive immune responses by bacterial zwitterionic polysaccharides. International journal of microbiology, 2010, vol. 2010, pp. 1-12, epub.


Войти или Создать
* Забыли пароль?