Рассмотрены основные компоненты инструментальных и методических разработок для исследования биологических тканей методами структурной биологии с использованием синхротронного излучения (СИ) из накопительных колец ВЭПП-3 и Сибирь-2 в Московском и Сибирском центрах коллективного пользования. Наша цель состоит в изучении механизмов структурно-функциональной устойчивости нативных и трансформированных тканей человека и животных при различных физико-химических воздействиях. Представлены возможности созданных аппаратуры и методов, а также экспериментальные данные по исследованию биологических полимеров с различной степенью упорядоченности в молекулярной и наномасштабной шкале.
синхротронное излучение, система первичных коллиматоров, рентгеновская дифракция с высоким временным разрешением
1. Kulipanov G.N. The status of SR Research in the Soviet Union. Nuclear Instruments and Methods in Phys. Res., 1987, vol. A261, рp. 1-7.
2. Belyaev S.T., Stankevitch V.G. Kurchatov Synchrotron Radiation Source status report. Review of Scientific Instruments, 1995, vol. 66, no. 2, рp. 2358-2361. ; DOI: https://doi.org/10.1063/1.1145687; EDN: https://elibrary.ru/ZYJIPD
3. Vazina A.A. Biological application of synchrotron radiation: from Artem Alikhanyan to nowadays. Brilliant Light in Life and Material Sciences. NATO Security through Science - B: Physics and Biophysics, 2007, pp. 121-131.
4. Корнеев В.Н., Герасимов В.С. Автор. свид. № 883725, заявка № 2890450, 1980. [Korneev V.N., Gerasimov V.S., Author’s certif. no. 883725, request no. 2890450, 1980 (in Russ.)]
5. Корнеев В.Н., Герасимов В.С. Автор. свид. № 883726, заявка № 2890452, 1980. [Korneev V.N., Gerasimov V.S., Author’s certif. no. 883726, request no. 2890452, 1980 (in Russ.)]
6. Корнеев В.Н. Автор. свид. № 915098, заявка № 2974857, 1980. [Korneev V.N. Author’s certif. no. 915098, request no. 2974857, 1980 (in Russ.)]
7. Корнеев В.Н. Автор. свид. № 1073803, заявка № 3509672, 1982. [Korneev V.N. Author’s certif. no. 1073803, request no. 3509672 (1982) (in Russ.)]
8. Корнеев В.Н. и др. Автор. свид. № 1167484, заявка № 3659145, 1983. [Korneev V.N. et al. Author’s certif. no 1167484 (USSR), Bull. Isobr., 1985, no. 26 (in Russ.)]
9. Корнеев В.Н. и др. Автор. свид. № 1289269, заявка № 3849209, 1985. [Korneev V.N. et al. Author’s certif. no. 1289269, request no. 3849209, 1985 (in Russ.)]
10. Корнеев В.Н., Герасимов В.С. Автор. свид. № 1327717, заявка № 3947700, 1985. [Korneev V.N., Gerasimov V.S. Author’s certif. no. 1289269, request no. 3947700, 1985 (in Russ.)]
11. Корнеев В.Н., Герасимов В.С. Автор. свид. № 1245969, заявка № 3849208, 1985. [Korneev V.N., Gerasimov V.S. Author’s certif. no. 1289269, request no. 3849208, 1985 (in Russ.)]
12. Корнеев В.Н. и др. Автор. свид. № 1245970, заявка № 3850412, 1985. [Korneev V.N. et al. Author’s certif. no. 1245970, request no. 3850412, 1985 (in Russ.)]
13. Корнеев В.Н., Герасимов В.С. Автор. свид. № 1322889, заявка № 3947566, 1985. [Korneev V.N., Gerasimov V.S. Author’s certif. no. 1322889, request no. 3947566, 1985 (in Russ.)]
14. Корнеев В.Н., Матюшин А.М. Автор. свид. № 1322799, заявка № 3947565, 1985. [Korneev V.N., Matyushin A.M. Author’s certif. no. 1322799, request no. 3947565, 1985 (in Russ.)]
15. Корнеев В.Н. и др. Автор. свид. № 1521134, заявка № 4385519, 1988. [Korneev V.N. et al. Author’s certif. no. 1521134, request no. 4385519, 1988 (in Russ.)]
16. Герасимов В.С. и др. Малоугловая рентгеновская камера с использованием синхротронного излучения. Приборы и техника эксперимента, 1976, т. 3, с. 217. [Gerasimov V.S. et al. Pribory i Tekhnika Eksperimenta, 1976, vol. 3, p. 217. (in Russ.)]
17. Корнеев В.Н. и др. Камера ФРАКС для малоугловой монохроматической дифрактометрии на синхротронном рентгеновском излучении. Приборы и техника эксперимента, 1984, т. 5, с. 180. [Korneev V.N. et al. Camera FRAKS for monochromatic small-angle diffraction of synchrotron x-rays. Pribory i Tekhnika Eksperimenta, 1984, vol. 5, p. 180. (in Russ.)]
18. Gadzhiev A.M. et al. Combination of optical and small-angle X-ray scattering diffractometers in the high-time-resolution method for structural studies. Nuclear Instruments and Methods in Phys. Res., 1989, vol. A289, р. 728.
19. Gerasimov V.S. et al. Search for biological objects by refraction radiography using synchrotron radiation of the VEPP-3 storage ring. Nuclear Instruments and Methods in Phys. Res., 1998, vol. A405, no. 2-3, р. 525.
20. Aul’chenko V.M. et al. Status of method of time-resolved X-ray diffraction studies of biological objects at the Siberian SR Centre. Nuclear Instruments and Methods in Phys. Res., 2000, vol. A448, р. 245.
21. Korneev V.N. et al. The role of instrumental-methodical developments with the use of synchrotron radiation for researching the transformation of nanostructural parametres in biological objects. Advances in biosensors and bioelectronics (ABB), 2013, vol. 2, no. 4, p. 65.
22. Aul’chenco V.M. et al. A small-angle X-ray diffractometry station using a synchrotron radiation sources: design and adjustment modes. Nuclear Instruments and Methods in Phys. Res., 1995, vol. A359, p. 216.
23. Aul’chenko V.M. et al. The station for time-resolved investigation in wide and small angles of diffraction. Nuclear Instruments and Methods in Phys. Res., 1998, vol. A405, no. 2-3, p. 487.
24. Korneev V.N. et al. X-ray stations based on cylindrical zoom lenses for nanostructural investigations using synchrotron radiation. J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2012, vol. 6, no. 5, p. 849. ; DOI: https://doi.org/10.1134/S1027451012100084; EDN: https://elibrary.ru/RGMZTZ
25. Aul’chenko V.M. et al. Current status of the studies of biological objects by the time resolved X-ray diffraction technique. Nuclear Instruments and Methods in Phys. Res., 2005, vol. A543, p. 143.
26. James V., Kearsley J., Irving T., Amemiya Y., Cookson D. Using hair to screen for breast cancer. Nature, 1999, vol. 398, p. 33.
27. Corino G.L. and French P.W. Diagnosis of breast cancer by X-ray diffraction of hair. Int. J. Cancer, 2008, vol. 122, p. 847. ; DOI: https://doi.org/10.1002/ijc.23085; EDN: https://elibrary.ru/MJVULL
28. Aksirov A.M. et al. Biological and medical application of SR from storage rings VEPP-3 and “Siberia-2”. The origin of specific changes of small-angle X-ray diffraction pattern of hair and their correlation with the elemental contain. Nuclear Instruments and Methods in Phys. Res., 2001, vol. A470, p. 380.
29. Vazina A.A. et al. X-ray diffraction study of the nanostructural dynamics of fibrillar systems of hair tissue. Bulletin of the Russian Academy of Sciences: Physics, 2015, vol. 79, no. 1, p. 75. ; DOI: https://doi.org/10.3103/S1062873815010360; EDN: https://elibrary.ru/UEODYT
30. Vazina A. A. et al. Study of molecular and nanostructural dynamics of biological tissues under the influence of high-frequency electrosurgical welding. Bulletin of the Russian Academy of Sciences: Physics, 2013, vol. 77, no. 2, p. 146. ; DOI: https://doi.org/10.3103/S1062873813020391; EDN: https://elibrary.ru/RFFWWD
31. Vazina A.A. et al. Synergistic influence of HF-welding on nanostructiral orderliness of epithelial tissues of gastrointestinal tract. “Synchrotron and Free electron laser Radiation: generation and application (SFR-2016)”. Book of abstracts. Novosibirsk, Russia, 2016, p.41.
32. Vazina A.A. et al. Nanostructural mechanism of modifying adaptation of proteoglycan systems of biological tissues and mucus. Crystallography Reports, 2018, vol. 63, no. 7, pp. 1063-1070. ; DOI: https://doi.org/10.1134/S1063774518070258; EDN: https://elibrary.ru/GGLXTW
33. Vazina A.A. et al. X-ray diffraction study of structural stability of giant proteoglycan molecules of mucus. Nuclear Instruments and Methods in Phys. Res., 2009, vol. A603, p. 90.