LIGHT ACCLIMATION OF UNICELLULAR RED ALGA RHODELLA VIOLACEA: ΔPH BUILD UP, ANTENNA REASSEMBLING AND PHOTOPROTECTION
Аннотация и ключевые слова
Аннотация (русский):
Thylakoid membranes of red algae contain water-soluble membrane-bound complexes - phycobilisomes (PBSs) serving as peripheral antennae for photosystem II (PS II). Strong light absorbed by the PBSs triggers a fast formation of transthylakoid ΔpH that follows the non-photochemical quenching of chlorophyll (Chl) fluorescence. The ΔpH build-up seems to be essential for photoprotecting the photosynthetic apparatus in the absence of xantophyll cycle common to higher plants. However, the mechanisms of this process are yet to be studied in detail. Here we report on study the Chl fluorescence quenching in unicellular red algae Rhodella violacea and its correlation with the ΔpH gradient being formed. The relation of this phenomenon to PS II photoprotection in the normal and high light-acclimated Rhodella cells is also examined. Under the photoinhibitory conditions (white light of 2000-3000 μE/m2s), the ΔpH -dependent Chl fluorescence quenching was found to delay the kinetics of PS II photoinhibition. The uncouplers like nigericin and NH4Cl are known to break down ΔpH gradient and lead to the dissipation of Chl fluorescence quenching followed by enhancing the PS II photoinhibition rate. The same effect showed far-red (FR) light transthylakoid ΔpH consumption. ATPase inhibitor (DCCD) having no impact on ΔpH didn’t influence PS 2 photoinhibition as well This implies the photoprotection to be fulfilled by the proton gradient rather than by ATP synthesis. Light acclimation of Rhodella cells to higher irradiances (500-1000 μE/m2s) results in a partial loss of the periphery phycoerhytrin-containing subunits by PBSs. Here we show that the light-acclimated cultures display a higher resistance to the photoinhibitory light than the non-acclimated ones. This could be explained by diminishing the energy transfer from the reduced PBSs to PS II and light screening by the secondary carotenoids synthesized during light exposure. Low-temperature (77K) fluorescence data allowed to evaluate the molecular mechanisms contributing to suppressing Chl fluorescence in Rhodella cells and its recovery in darkness. Key words: antenna reassembling, photoprotection, Rhodella violacea.

Ключевые слова:
antenna reassembling, photoprotection, Rhodella violacea
Список литературы

1. Anderson J.M., Park Y.-I., Chow W.S. Photoinactivation and photoprotection of photosystem II in nature. Physiol. Plant., 1997, vol. 100, pp. 214-223.

2. Aro E.-M., Virgin I., Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. biophys. Acta, 1993, vol. 1143, pp. 113-134.

3. Barber J., Andersson B. Too much of a good thing: Light can be bad for photosynthesis. Trends biochem. Sci., 1992, vol. 17, pp. 61-66.

4. Bernard C., Etienne A.L., Thomas J.C. Synthesis and binding of phycoerythrin and its associated linkers to the phycobilisome in Rhodella violacea (Rhodophyta): compared effects of high light and translation inhibitors. J. Phycol., 1996, vol. 32, pp. 265-271.

5. Chekanov K., Schastnaya E., Neverov K., Leu S., Boussiba S., Zarka A., Solovchenko A. Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable condition and under stress. Biochim Biophys Acta Gen Subj, 2019, vol. 1863, pp. 1429-1442.

6. Choudhury N.K., Aslam M., Huffaker R.C. Photochemical activities in wheat chloroplasts incubated under irradiation and possible protection by zeaxanthin. Photosynthetica, 1994, vol. 30, pp. 397-405.

7. Critchley C., Russell A.W. Photoinhibition of photosynthesis in vivo: The role of protein turnover in photosystem II. Physiol. Plant., 1994, vol. 92, pp, 188-196.

8. Delphin E., Duval J.C., Etienne A.-L., Kirilovsky D. State transitions or pH dependent quenching of photosystem 2 fluorescence in red algae. Biochemistry, 1996, vol. 35, pp. 9435-9445.

9. Delphin E., Duval J.C., Etienne A.-L., Kirilovsky D. pH-dependent photosystem 2 fluorescence quenching induced by saturating, multiturnover pulses in red algae. Plant Physiol., 1998, vol. 118, pp. 103-113.

10. Demmig-Adams B. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. biophys. Acta, 1990, vol. 1020, pp. 1-24.

11. Demmig-Adams B., Adams W.W. III Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant mol. Biol., 1992, vol. 43, pp. 599-626.

12. Eskling M., Arvidsson P.-O., Akerlund H.-E.: The xanthophyll cycle, its regulation and components. Physiol. Plant., vol. 100, pp. 806-816.

13. Gantt E. Phycobilisomes. Annu Rev Plant Physiol., 1981, vol. 32, pp. 327-347.

14. Horton P., Ruban A.V., Young A.J. Regulation of the structure and function of the light-harvesting complexes of photosystem II by the xanthophyll cycle. In: Frank H.A., Young A.J., Britton G., Cogdell R.J. (ed.): The Photochemistry of Carotenoids. Kluwer Academic Publ., Dordrecht, 1999, vol. 8, pp. 271-291.

15. Koller K.P., Wehrmeyer W., Schneider H. Isolation and characterization of disc-shaped phycobilisomes from the red alga Rhodella violacea. Arch. Microbiol., 1977, vol. 112, pp. 61-67.

16. Krause G.H., Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant mol. Biol., 1991, vol. 42, pp. 313-349.

17. Mishra N.P., Francke C., van Gorkom H.J., Ghanotakis D.F. Destructive role of singlet oxygen during aerobic illumination of the Photosystem II core complex. Biochim. biophys. Acta, 1994, vol. 1186, pp. 81-90.

18. Muller P., Li X.-P., Niyogi K.K. Non-photochemical quenching. A response to excess light energy. Plant Physiol., 2001, vol. 125, pp. 1558-1566.

19. Neverov K.V., Krasnovsky A.A. Jr., Zabelin A.A., Shuvalov V.A., Shkuropatov A.Ya. Low-temperature (77 K) phosphorescence of triplet chlorophyll in isolated reaction centers of Photosystem II. Photosynthesis Research, 2015, vol. 125, pp. 43-49.

20. Ort D.R., Yocum C.F. Electron transport and energy transduction in photosynthesis: an overview. In: Ort D.R., Yocum C.F. (ed.): Oxygenic Photosynthesis: The Light Reactions. Kluwer Academic Publishers, Dordrecht, 1996, pp. 1-9.

21. Ritz M., Neverov K.V. and Etienne A.-L. pH-dependent fluorescence quenching and its photoprotective role in the unicellular red alga. Rhodella violacea. Photosynthetica, 1999, vol. 37, no. 2, pp. 267-280.

22. Ritz M., Thomas J.-C., Spilar A., and Etienne A.-L. Kinetics of photoacclimation in response to a shift to high light of the red alga Rhodella violacea adapted to low irradiance. Plant Physiol., 2000, vol. 123, pp. 1415-1425.

23. Satoh K., Murata N., Asada K., Tsuyoshi E., Junichi M., Chikahiro M. Molecular mechanism for relaxation of and protection from light stress. in Stress Responses of Photosynthetic Organisms. eds Satoh K, Murata N (Elsevier Science Publishing, Amsterdam), 1998, pp. 37-52.

24. Siefermann-Harms D. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant., 1987, vol. 69, pp. 561-568.

25. Solovchenko A.E., Neverov K.V. Carotenogenic response in photosynthetic organisms: a colorful story. Photosynthesis Research, 2017, vol. 133 (1-3), pp. 31-47.

26. Strasser R.J., Srivastava A. Govindjee Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol., 1995, vol. 61, pp. 32-42.

27. Strizh I.G., Neverov K.V. Photoinhibition of photosystem II in vitro: Spectral and kinetic analyses. Russian Journal of Plant Physiol., 2007, vol. 54, pp. 439-449.

28. Virgin I., Salter A.H., Ghanotakis D.F., Andersson B. Light-induced D1 protein degradation is catalyzed by serine-type protease. FEBS Lett., 1991, vol. 281, pp. 125-128.

29. Young A.J., Philip, D., Frank, H.A., Ruban, A.V., Horton, P. The xanthophyll cycle and carotenoid mediated dissipation of excess excitation energy in photosynthesis. Pure appl. Chem., 1997, vol. 69, pp. 2125-2130.

30. Zabelin A.A., Neverov K.V., Krasnovsky A.A.Jr., Shkuropatova V.A., Shuvalov V.A., Shkuropatov A.Ya. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy. BBA - Bioenergetics, 2016, vol. 1857, pp. 782-788.


Войти или Создать
* Забыли пароль?