Москва, г. Москва и Московская область, Россия
Москва, г. Москва и Московская область, Россия
Москва, г. Москва и Московская область, Россия
Москва, г. Москва и Московская область, Россия
Москва, г. Москва и Московская область, Россия
Москва, г. Москва и Московская область, Россия
При раке яичников перитонеальная жидкость является активным участником канцерогенеза и свободнорадикального гомеостаза, являясь материалом для исследования локального окислительного стресса. В обсервационное одномоментное неконтролируемое моноцентровое пилотное исследование были включены 48 пациенток 25–74 лет с гистологически подтвержденным раком яичников и доброкачественными новообразованиями яичника. При помощи оригинальной методики, основанной на методе активированной кинетической хемилюминесценции, оценены антиоксидантные профили перитонеальной жидкости с раком яичника и доброкачественными новообразованиями. Для каждого случая из хемилюминограммы рассчитывали два параметра: «уратную» антиоксидантную емкость перитонеальной жидкости Sp, обусловленную сильными антиоксидантами,а так же «альбуминовую» емкость ∆Ib и ∆Ip, обусловленную меркаптоальбумином В перитонеальной жидкости антиоксидантная емкость значимо нарастала в ряду доброкачественные опухоли ˂ высокодифференцированные ˂умеренно- и низкодифференцированные аденокарциномы, приводя к состоянию антиоксидантной избыточности в случае умеренно- и низкодифференцированных аденокарцином. В этом же ряду снижается «альбуминовая» емкость, что свидетельствует об нарастании окислительного стресса в системе глутатиона Таким образом, при раке яичников прогрессирование опухоли приводит к сдвигу в сторону избытка антиоксидантов за счет, возможно, метаболитов самой опухоли.
антиоксидантная емкость, перитонеальная жидкость, рак яичников
1. Colombo N., Sessa C., du Bois A., Ledermann J., McCluggage W.G., McNeish I., Morice P., Pignata S., Ray-Coquard I., Vergote I. et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Ann. Oncol., 2019, vol. 30, pp. 672-705, doi:https://doi.org/10.1093/annonc/mdz062.
2. Webb P.M., Jordan S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, vol. 41, pp. 3-14, doi:https://doi.org/10.1016/j.bpobgyn.2016.08.006.
3. Jayson G.C., Kohn E.C., Kitchener H.C., Ledermann J.A. Ovarian cancer. Lancet, 2014, vol. 384, pp. 1376-1388, doi:https://doi.org/10.1016/S0140-6736(13)62146-7.
4. Moloney J.N., Cotter T.G. ROS signalling in the biology of cancer. Semin Cell Dev. Biol., 2018, vol. 80, pp. 50-64, doi:https://doi.org/10.1016/j.semcdb.2017.05.023.
5. Aggarwal V., Tuli H.S., Varol A., Thakral F., Yerer M.B., Sak K., Varol M., Jain A., Khan M.A., Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules, 2019, vol. 9, doi:https://doi.org/10.3390/biom9110735.
6. Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med, 2010, vol. 49, pp. 1603-1616, doi:https://doi.org/10.1016/j.freeradbiomed.2010.09.006.
7. Wang J., Yi J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther, 2008, vol. 7, pp. 1875-1884, doi:https://doi.org/10.4161/cbt.7.12.7067.
8. Hileman E.O., Liu J., Albitar M., Keating M.J., Huang P. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol, 2004, vol. 53, pp. 209-219, doi:https://doi.org/10.1007/s00280-003-0726-5.
9. Fletcher N.M., Belotte J., Saed M.G., Memaj I., Diamond M.P., Morris R.T., Saed G.M. Specific point mutations in key redox enzymes are associated with chemoresistance in epithelial ovarian cancer. Free Radic Biol Med, 2017, vol. 102, pp. 122-132, doi:https://doi.org/10.1016/j.freeradbiomed.2016.11.028.
10. Belotte J., Fletcher N.M., Saed M.G., Abusamaan M.S., Dyson G., Diamond M.P., Saed G.M. A Single Nucleotide Polymorphism in Catalase Is Strongly Associated with Ovarian Cancer Survival. PLoS One, 2015, vol. 10, e0135739, doi:https://doi.org/10.1371/journal.pone.0135739.
11. Belotte J., Fletcher N.M., Awonuga A.O., Alexis M., Abu-Soud H.M., Saed M.G., Diamond M.P., Saed G.M. The role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer. Reprod Sci, 2014, vol. 21, pp. 503-508, doi:https://doi.org/10.1177/1933719113503403.
12. Mikula-Pietrasik J., Uruski P., Matuszkiewicz K., Szubert S., Moszynski R., Szpurek D., Sajdak S., Tykarski A., Ksiazek K. Ovarian cancer-derived ascitic fluids induce a senescence-dependent pro-cancerogenic phenotype in normal peritoneal mesothelial cells. Cell Oncol (Dordr), 2016, vol. 39, pp. 473-481, doi:https://doi.org/10.1007/s13402-016-0289-1.
13. Mikula-Pietrasik J., Uruski P., Szubert S., Szpurek D., Sajdak S., Tykarski A., Ksiazek K. Malignant ascites determine the transmesothelial invasion of ovarian cancer cells. Int J Biochem Cell Biol, 2017, vol. 92, pp. 6-13, doi:https://doi.org/10.1016/j.biocel.2017.09.002.
14. Pakula M., Mikula-Pietrasik J., Stryczynski L., Uruski P., Szubert S., Moszynski R., Szpurek D., Sajdak S., Tykarski A., Ksiazek K. Mitochondria-related oxidative stress contributes to ovarian cancer-promoting activity of mesothelial cells subjected to malignant ascites. Int J Biochem Cell Biol, 2018, vol. 98, pp. 82-88, doi:https://doi.org/10.1016/j.biocel.2018.03.011.
15. Alekseev A.V., Proskurnina E.V., Vladimirov Y.A. Determination of Antioxidants by Sensitized Chemiluminescence Using 2,2'_azo_bis(2_amidinopropane) Moscow University Chemistry Bulletin, 2012, vol. 67, pp. 127-132, doi:https://doi.org/10.3103/S0027131412030029.
16. Ames B.N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A, 1981, vol. 78, pp. 6858-6862, doi:https://doi.org/10.1073/pnas.78.11.6858.
17. Lawal A.O., Kolude B., Adeyemi B.F. Serum uric Acid levels in oral cancer patients seen at tertiary institution in Nigeria. Ann Ib Postgrad Med, 2012, vol. 10, pp. 9-12.
18. Taghizadeh N., Vonk J.M., Boezen H.M. Serum uric acid levels and cancer mortality risk among males in a large general population-based cohort study. Cancer Causes Control, 2014, vol. 25, pp. 1075-1080, doi:https://doi.org/10.1007/s10552-014-0408-0.
19. Dziaman T., Banaszkiewicz Z., Roszkowski K., Gackowski D., Wisniewska E., Rozalski R., Foksinski M., Siomek A., Speina E., Winczura A. et al. 8-Oxo-7,8-dihydroguanine and uric acid as efficient predictors of survival in colon cancer patients. Int J Cancer, 2014, vol. 134, pp. 376-383, doi:https://doi.org/10.1002/ijc.28374.
20. Kuhn T., Sookthai D., Graf M.E., Schubel R., Freisling H., Johnson T., Katzke V., Kaaks R. Albumin, bilirubin, uric acid and cancer risk: results from a prospective population-based study. Br J Cancer, 2017, vol. 117, pp. 1572-1579, doi:https://doi.org/10.1038/bjc.2017.313.
21. Benli E., Cirakoglu A., Ayyildiz S.N. Yuce A. Comparison of serum uric acid levels between prostate cancer patients and a control group. Cent European J Urol, 2018, vol. 71, pp. 242-247, doi:https://doi.org/10.5173/ceju.2018.1619.
22. Wu C.Y., Hu H.Y., Chou Y.J., Huang N., Chou Y.C., Lee M.S., Li C.P. High Serum Uric Acid Levels Are Associated with All-Cause and Cardiovascular, but Not Cancer, Mortality in Elderly Adults. J Am Geriatr Soc, 2015, vol. 63, pp. 1829-1836, doi:https://doi.org/10.1111/jgs.13607.
23. Shin H.S., Lee H.R., Lee D.C., Shim J.Y., Cho K.H., Suh S.Y. Uric acid as a prognostic factor for survival time: a prospective cohort study of terminally ill cancer patients. J Pain Symptom Manage, 2006, vol. 31, pp. 493-501, doi:https://doi.org/10.1016/j.jpainsymman.2005.11.014.
24. Strasak A.M., Rapp K., Hilbe W., Oberaigner W., Ruttmann E., Concin H., Diem G., Pfeiffer K.P., Ulmer H. et al. Serum uric acid and risk of cancer mortality in a large prospective male cohort. Cancer Causes Control, 2007, vol. 18, pp. 1021-1029, doi:https://doi.org/10.1007/s10552-007-9043-3.
25. Strasak A.M., Rapp K., Hilbe W., Oberaigner W., Ruttmann E., Concin H., Diem G., Pfeiffer K.P., Ulmer H. et al. The role of serum uric acid as an antioxidant protecting against cancer: prospective study in more than 28 000 older Austrian women. Ann Oncol, 2007, vol. 18, pp. 1893-1897, doi:https://doi.org/10.1093/annonc/mdm338.
26. Deng Z., Gu Y., Hou X., Zhang L., Bao Y., Hu C., Jia W. Association between uric acid, cancer incidence and mortality in patients with type 2 diabetes: Shanghai diabetes registry study. Diabetes Metab Res Rev, 2016, vol. 32, pp. 325-332, doi:https://doi.org/10.1002/dmrr.2724.
27. Yan S., Zhang P., Xu W., Liu Y., Wang B., Jiang T., Hua C., Wang X., Xu D., Sun B. Serum Uric Acid Increases Risk of Cancer Incidence and Mortality: A Systematic Review and Meta-Analysis. Mediators Inflamm, 2015, vol. 2015, p. 764250, doi:https://doi.org/10.1155/2015/764250.
28. Fini M.A., Elias A., Johnson R.J., Wright R.M. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin Transl Med, 2012, vol. 1, p. 16, doi:https://doi.org/10.1186/2001-1326-1-16.
29. Yiu A., Van Hemelrijck M., Garmo H., Holmberg L., Malmstrom H., Lambe M.; Hammar N., Walldius G., Jungner I., Wulaningsih W. Circulating uric acid levels and subsequent development of cancer in 493,281 individuals: findings from the AMORIS Study. Oncotarget, 2017, vol. 8, pp. 42332-42342, doi:https://doi.org/10.18632/oncotarget.16198.
30. Yue C.F., Feng P.N., Yao Z.R., Yu X.G., Lin W.B., Qian Y.M., Guo Y.M., Li L.S., Liu M. High serum uric acid concentration predicts poor survival in patients with breast cancer. Clin Chim Acta, 2017, vol. 473, pp. 160-165, doi:https://doi.org/10.1016/j.cca.2017.08.027.
31. Dai X.Y., He Q.S., Jing Z., Yuan J.Q. Serum uric acid levels and risk of kidney cancer incidence and mortality: A prospective cohort study. Cancer Med, 2020, vol. 9, pp. 5655-5661, doi:https://doi.org/10.1002/cam4.3214.
32. Huang C.F., Huang J.J., Mi N.N., Lin Y.Y., He Q.S., Lu Y.W., Yue P., Bai B., Zhang J.D., Zhang C. et al. Associations between serum uric acid and hepatobiliary-pancreatic cancer: A cohort study. World J Gastroenterol, 2020, vol. 26, pp. 7061-7075, doi:https://doi.org/10.3748/wjg.v26.i44.7061.
33. Kellenberger L.D., Bruin J.E., Greenaway J., Campbell N.E., Moorehead R.A., Holloway A.C., Petrik J. The role of dysregulated glucose metabolism in epithelial ovarian cancer. J Oncol, 2010, vol. 2010, p. 514310, doi:https://doi.org/10.1155/2010/514310.
34. Tania M., Khan M.A., Song Y. Association of lipid metabolism with ovarian cancer. Curr Oncol, 2010, vol. 17, pp. 6-11, doi:https://doi.org/10.3747/co.v17i5.668.
35. Kouba S., Ouldamer L., Garcia C., Fontaine D., Chantome A., Vandier C., Goupille C., Potier-Cartereau M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium, 2019, vol. 81, pp. 38-50, doi:https://doi.org/10.1016/j.ceca.2019.06.002.
36. Ji Z., Shen Y., Feng X., Kong Y., Shao Y., Meng J., Zhang X., Yang G. Deregulation of Lipid Metabolism: The Critical Factors in Ovarian Cancer. Front Oncol, 2020, vol. 10,p. 593017, doi:https://doi.org/10.3389/fonc.2020.593017.
37. Bagnoli M., Granata A., Nicoletti R., Krishnamachary B., Bhujwalla Z.M., Canese R., Podo F., Canevari S., Iorio E., Mezzanzanica D. Choline Metabolism Alteration: A Focus on Ovarian Cancer. Front Oncol, 2016, vol. 6, p. 153, doi:https://doi.org/10.3389/fonc.2016.00153.
38. Rockfield S., Raffel J., Mehta R., Rehman N., Nanjundan M. Iron overload and altered iron metabolism in ovarian cancer. Biol Chem, 2017, vol. 398, pp. 995-1007, doi:https://doi.org/10.1515/hsz-2016-0336.
39. Kreitzburg K.M., van Waardenburg R., Yoon K.J. Sphingolipid metabolism and drug resistance in ovarian cancer. Cancer Drug Resist, 2018, vol. 1, pp. 181-197, doi:https://doi.org/10.20517/cdr.2018.06.
40. Rizzo A., Napoli A., Roggiani F., Tomassetti A., Bagnoli M., Mezzanzanica D. One-Carbon Metabolism: Biological Players in Epithelial Ovarian Cancer. Int J Mol Sci, 2018, vol. 19, doi:https://doi.org/10.3390/ijms19072092.
41. Amoroso M.R., Matassa D.S., Agliarulo I., Avolio R., Maddalena F., Condelli V., Landriscina M., Esposito F. Stress-Adaptive Response in Ovarian Cancer Drug Resistance: Role of TRAP1 in Oxidative Metabolism-Driven Inflammation. Adv Protein Chem Struct Biol, 2017, vol. 108, pp. 163-198, doi:https://doi.org/10.1016/bs.apcsb.2017.01.004.
42. Mates J.M., Sanchez-Jimenez F.M. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol, 2000, vol. 32, pp. 157-170, doi:https://doi.org/10.1016/s1357-2725(99)00088-6.
43. Bauer G. Reactive oxygen and nitrogen species: efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res, 2000, vol. 20, pp. 4115-4139.
44. Stojnev S., Ristic-Petrovic A., Jankovic-Velickovic L. Reactive oxygen species, apoptosis and cancer. Vojnosanit Pregl, 2013, vol. 70, pp. 675-678, doi:https://doi.org/10.2298/vsp1307675s.
45. Poljsak B., Milisav I. The neglected significance of "antioxidative stress". Oxid Med Cell Longev, 2012, vol. 2012, p. 480895, doi:https://doi.org/10.1155/2012/480895.