SYNTHESIS OF COMPLEX DUAL FRAMES WEIL-HEISENBERG FOR SPECTRAL ANALYSIS OF NON-STATIONARY SIGNALS
Abstract and keywords
Abstract (English):
For spectral-temporal analysis of various non-stationary processes, it is proposed to use special tools - Weil-Heisenberg dual complex frames, which allow decomposing signals into fragments well-localized in time and frequency with the possibility of a more detailed spectral analysis of the signal in each selected time window. An algebraic method is being developed for the synthesis of such dual frames for discrete signals on a finite interval, allowing flexible tuning of the time-frequency resolution and fast computational implementation. The results of a computational experiment are presented, confirming the good properties of the obtained frames for detection-discrimination problems.

Keywords:
Weil-Heisenberg dual complex frame, optimal frame synthesis, good frequency-time localization, signal frame, efficient computational implementation, frequency-temporal resolution
Text
Publication text (PDF): Read Download
References

1. Gabor D. Theory of communication // J. Inst. Elect. Eng. (London). 1946. Vol. 93, no 111. Pp. 429-457.

2. Dobeshi I. Desyat' lekciy po veyvletam. Izhevsk : NIC «Regulyarnaya i haoticheskaya dinamika», 2001. 464 s.

3. Wexler J., Raz S. Discrete Gabor expansions // Signal Processing. 1990. Vol. 21. Pp. 207-220.

4. Zibulski M., Zeevi Y. Y. Frame analysis of the discrete Gabor-scheme // IEEE Trans. Signal Processing. 1994. Vol. 42. Pp. 942-945.

5. Qian S., Chen K., Li S. Optimal biorthogonal functions for finite discrete-time Gabor expansion // Signal Processing. 1992. Vol. 27. Pp. 177-185.

6. Augustus J. E., Janssen M., Bolcskei H. Equivaence of Two Methods for Constructing Tight Gabor Frames // IEEE Signal Processing Letters. 2000. Vol. 7, no 4. Pp. 79-82.

7. Bolcskei H., Feichtinger H. G., Hlawatsch F. Diagonalizing the Gabor frame operator // Proc. IEEE UK Symp. Applications Time-Frequency Time-Scale Methods. Univ. Warwick, Coventry, U. K., Aug. 1995. Pp. 249-255.

8. Volchkov V. P. Signal'nye bazisy s horoshey chastotno-vremennoy lokalizaciey // Elektrosvyaz'. 2007. № 2. S. 21-25.

9. Volchkov V. P., Petrov D. A. Orthogonal Well-Localized Weyl-Heisenberg Basis Construction and Optimization for Multicarrier Digital Communication Systems // Proc. of ICUMT, St. Petersburg, Oct. 2009.

10. Volchkov V. P., Sannikov V. G. Sintez ortogonal'nyh veschestvennyh signal'nyh bazisov Veylya - Geyzenberga na osnove algebraicheskogo podhoda // Elektrosvyaz'. 2019. № 5. S. 28-34.

11. Volchkov V. P. Sintez kompleksnyh signal'nyh freymov Veylya - Geyzenberga s horoshey chastotno-vremennoy lokalizaciey // Infokommunikacionnye i radioelektronnye tehnologii. 2019. T. 2, № 1. S. 86-99.

12. Volchkov V., Sannikov V., Mamonov A. Synthesis of Real Weyl-Heisenberg Signal Frames with Desired Frequency-Time Localization. 2019 24th Conference of Open Innovations Association (FRUCT). Moscow, Russia. 2019. Pp. 502-508.

13. Oppengeym A., Shafer R. Cifrovaya obrabotka signalov. M. : Tehnosfera, 2012. 1048 s.


Login or Create
* Forgot password?