BIOPHYSICS OF OPEN SYSTEMS: EXPERIMENTAL EVULUTIONAL MACHINES
Abstract and keywords
Abstract (English):
The article is a brief review of the modern state of problem of thermodynamics criteria of evolution of biological open system. Experiments are considered on the experimental evolution (microevolution) of populations of microorganisms in continuous cultures. From the point of view of thermodynamics, continuous cultures of microorganisms are thermodynamics open system, able to be in the stable stationary states. In accordance with classification of M. Eigen, the chemostat corresponds to the case of constant flows (constant dilution rate), while the turbidostat - to the case of constant organization (constant density of population of microorganisms). As follows from general principles of non-equilibrium thermodynamics (principle of Onsager, theorem of Prigogine) open systems of both types in a steady-state must evolve in the direction of decline of entropy production rate. However, results of experiments on the evolution of microorganisms in the chemostat and in the turbidostat conflict with it. It is shown that in the process of experimental evolution of genetically modified microorganisms (ГМО) in open systems of both types at limiting of development of population by substrate the entropy production rate must increase, but not decrease, as follows from the basic principles of non-equilibrium thermodynamics. The results of experiments testify to the necessity of further development of thermodynamics theory of biological open systems, further study of general regularities of biological development.

Keywords:
Non-equilibrium thermodynamics, open system, evolution of steady-states, continuous cultures of microorganisms, turbidostat and chemostat, principles of microevolution
Text
Publication text (PDF): Read Download
References

1. Novick A., Szilard L. Description of the chemostat. Science, 1950, vol. 112, pp. 715-718.

2. Bryson V. Microbial selection. P. II. The turbidostatic selector - a device for automatic isolation of bacterial variants. Science, 1952, vol. 116, pp. 48-52.

3. Pechurkin N.S., Bril'kov A.V., Marchenkova T.V. Populyacionnye aspekty biotehnologii. Novosibirsk: Nauka, 1990, 173 c. [Pechurkin N.S., Brilkov A.V., Marchenkova T.V. Population aspects of biotechnology. Novosibirsk: Nauka, 1990, 173 p. (In Russ.)]

4. Gitelzon I.I., Pechurkin N.S., Brilkov A.V. Population Problems in the Biology of Unicellular Organisms. - London: Harwood Academic Publ. GmbH (United Kingdom), 1989, 77 p.

5. Monod J. La technique de culture continue. Theorie et applications. Ann. Inst. Past., 1950, vol. 79, pp. 390-410.

6. Eygen M. Samoorganizaciya materii i evolyuciya biologicheskih makromolekul. M.: Mir, 1973, 216 c. [Eigen M. Self organization of matter and the evolution of biological macro molecules. Naturwissenschaften, 1971, vol. 58, no. 10, pp. 465-523.]

7. Wick L.M., Weilenmann H., Egli T. The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics. Microbiology, 2002, vol. 148, pp. 2889-2902.

8. Pechurkin N.S., Nikiforova N.V., Degermendzhi A.G. Sravnitel'nyy analiz evolyucii giperciklov Eygena i mikrobnyh populyaciy v otkrytyh sistemah. Biofizika, 1982, t. 27, № 2, s. 297-303. [Pechurkin N.C., Nikiforova N.V., Degermendzy A.G. The comparative analysis of evolution of the Eigens hypercycles and microbial populations in open systems. Biophysics, 1982, vol. 27, no. 2, pp. 297-303. (In Russ.)]

9. Hsu S.B., Hubbell S.P., Waltman P. A mathematical theory for single-nutrient competition in continuous cultures of microorganisms. SIAM J. Appl. Maths., 1977, vol. 32, pp. 366-383.

10. Rubin A.B. Termodinamika biologicheskih processov. Soros. obrazov. zhurn., 1998, № 10, s. 77-83. [Rubin A.B. Thermodynamics of biological processes. Soros Ed. J., 1998, no. 10, pp. 77-83. (In Russ.)]

11. Ganusov V.V., Brilkov A.V. Estimating the instability parameters of plasmid-bearing cells. I. Chemostat culture. Journal of Theoretical Biology, 2002, vol. 219, no. 2, pp. 193-205.

12. Nikolis G., Prigozhin I. Samoorganizaciya v neravnovesnyh sistemah: ot dissipativnyh struktur k uporyadochennosti cherez fluktuacii. M.: Mir, 1979, 512 c. [Nikolis G., Prigogin I. Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. M.: Mir, 1979, 512 p. (In Russ.)]

13. Ebeling V., Engel' A., Faystel' R. Fizika processov evolyucii. M.: Editorial URSS, 2001, 328 c. [Ebeling V., Engel A., Feistel R. Physics of evolution processes. M.: Editorial URSS, 2001, 328 p. (In Russ.)]

14. Zotin A.I., Zotin A.A. Napravlenie, skorost' i mehanizmy progressivnoy evolyucii: Termodinamicheskie i eksperimental'nye osnovy. M.: Nauka, 1999, 320 c. [Zotin A.I., Zotin A.A. Direction, rate and mechanisms of progressive evolution: Thermodynamic and experimental bases. M.: Nauka, 1999, 320 p. (In Russ.)]


Login or Create
* Forgot password?