Abstract and keywords
Abstract (English):
The work examines the effects of a number of antimicrobial agents (triclosan, dequalinium, bedaquiline and itaconic acid) on isolated rat liver mitochondria. It has been shown that these compounds dramatically affect mitochondrial respiration and/or permeability of the inner mitochondrial membrane. Triclosan inhibits complex II of the mitochondrial respiratory chain and permeabilizes the inner mitochondrial membrane. The permeabilization of the mitochondrial membrane is associated with the formation of lipid pores in lipid bilayer. Itaconic acid inhibits succinate dehydrogenase, but does not permeabilize the mitochondrial membrane. Dequalinium is a potent inhibitor of the complex III of the mitochondrial respiratory chain and induces a nonspecific permeability of the inner mitochondrial membrane. Unlike triclosan, the dequalinium-induced mitochondrial permeabilization is associated with the opening of cyclosporin A-sensitive MPT pore. Bedaquiline inhibits the respiration rates at all functional states of mitochondria. In addition, it is able to inhibit the opening of Ca2+-dependent cyclosporin A-sensitive MPT pores in the mitochondrial membrane. The mechanisms of the toxic effect of antimicrobial agents on eukaryotic cells are discussed.

Keywords:
mitochondria, triclosan, itaconic acid, dequalinium, bedaquiline
Text
Text (PDF): Read Download
References

1. Gualano G., Capone S., Matteelli A., Palmieri F. New Antituberculosis Drugs: From Clinical Trial to Programmatic Use. Infect Dis Rep., 2016, vol. 8, no. 2, p. 6569.

2. Lakshmanan M., Xavier A.S. Bedaquiline - The first ATP synthase inhibitor against multi drug resistant tuberculosis. J. Young Pharm., 2013, vol. 5, no. 4, pp. 112-115.

3. Heath R.J., Rubin J.R., Holland D.R., Zhang E., Snow M.E., Rock C.O. Mechanism of triclosan inhibition of bacterial fatty acid synthesis, J. Biol. Chem., 1999, vol. 274, pp. 11110-11114.

4. Epand R.M., Epand R.F. Domains in bacterial membranes and the action of antimicrobial agents. Mol Biosyst., 2009, vol. 5, no. 6, pp. 580-587.

5. Bodden W.L., Palayoor S.T., Hait W.N. Selective antimitochondrial agents inhibit calmodulin. Biochem Biophys Res Commun., 1986, vol. 135, no. 2, pp. 574-582.

6. Zuckerbraun H.L., Babich H., May R., Sinensky M.C. Triclosan: cytotoxicity, mode of action, and induction of apoptosis in human gingival cells in vitro. Eur. J. Oral Sci., 1998, vol. 106, pp. 628-636.

7. Skulachev V.P. Bogachev A.V., Kasparinskiy F.O. Membrannaya bioenergetika. M.: Izd-vo Moskovskogo un-ta, 2010, 368 s. [Skulachev V.P., Bogachev A.V., Kasparinsky F.O. Membrane bioenergetics. M.: Moscow University Press, 2010, 368 p. (In Russ.)]

8. Halestrap A.P., Richardson A.P. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J. Mol. Cell Cardiol., 2015, vol. 78, pp. 129-141.

9. Belosludtsev K.N., Belosludtseva N.V., Agafonov A.V., Astashev M.E., Kazakov A.S., Saris N.-E.L., Mironova G.D. Ca2+-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study. Biochim. Biophys. Acta, 2014, vol. 1838, no. 10, pp. 2600-2606.

10. Babbs M., Collier H.O., Austin W.C., Potter M.D., Taylor E.P. Salts of decamethylene-bis-4-aminoquinaldinium (dequadin); a new antimicrobial agent. J Pharm Pharmacol., 1956, vol. 8, no. 2, pp. 110-119.

11. Chen Z.P., Li M., Zhang L.J., He J.Y., Wu L., Xiao Y.Y., Duan J.A., Cai T., Li W.D. Mitochondria-targeted drug delivery system for cancer treatment. J. Drug Target., 2016, vol. 24, no. 6, pp. 492-502.

12. Adler J. Wang S.F., Lardy H.A. The metabolism of itaconic acid by liver mitochondria J. Biol. Chem., 1957, vol. 229, no. 2, pp. 865-79.

13. Gamboa-Vujicic G., Emma D.A., Liao S.Y., Fuchtner C., Manetta A. Toxicity of the mitochondrial poison dequalinium chloride in a murine model system. J Pharm Sci., 1993, vol. 82, no. 3, pp. 231-235.

14. Weiss M.J., Wong J.R., Ha C.S., Bleday R., Salem R.R., Steele G.D. Jr., Chen L.B. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc. Natl. Acad. Sci USA, 1987, vol. 84, no. 15, pp. 5444-5448.

15. Ajao C., Andersson M.A., Teplova V.V., Nagy S., Gahmberg C.G., Andersson L.C., Hautaniemi M., Kakasi B., Roivainen M., Salkinoja-Salonen M. Mitochondrial toxicity of triclosan on mammalian cells. Toxicology Report, 2015, vol. 2, pp. 624-637.


Login or Create
* Forgot password?