PEPTIDE ANTIBIOTICS - STRUCTURAL FEATURES AND REGULARITIES OF BIOLOGICAL ACTIVITY
Abstract and keywords
Abstract (English):
Due to the wide spread of multidrug resistant pathogens in world medical practice, there is a high demand for antibiotics belonging to the chemical group of peptides (in particular, glycopeptides), due to their significant antibacterial activity against multidrug-resistant pathogens. At the moment, this group of antibiotics in the nomenclature of antibacterial medicines includes daptomycin, ramoplanin, teicoplanin and vancomycin. Antibiotics of this group have activity against gram-positive bacteria and mycobacteria, including Mycobacterium tuberculosis. The advantage of glycopeptide antibiotics over a number of antibiotics of other groups is the bactericidal type of action and high activity against microorganisms resistant to many drugs, including β-lactam antibiotics and fluoroquinolones. According to the World Health Organization (WHO), the resistance of pathogens to antibiotics is the main challenge facing modern healthcare. The problem of the rapid spread of resistant forms among pathogenic microorganisms is exacerbated by the lack of a sufficient number of effective antibiotics in modern medicine. According to the World Health Organization, from 2000 to 2015, only 2 new natural antibiotics for clinical trials have been approved worldwide.

Keywords:
peptide antibiotics, antimicrobial activity, bacterial strains-producers, structure
Text
Publication text (PDF): Read Download
References

1. Bérdy J. Bioactive Microbial Metabolites. The Journal of Antibiotics., 2005, vol. 58, pp. 1-26.

2. Chin Y.-W., Balunas M.J., Chai H.B., Kinghorn A.D. Drug Discovery From Natural Sources. AAPS Journal, 2006, vol. 8, no. 2, pp. 239-253.

3. Hofemeister J., Conrad B., Adler B., Hofemeister B., Feesche J., Kucheryava N., Steinborn G., Franke P., Grammel N., Zwintscher A., Leenders F., Hitzeroth G, Vater J. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol. Genet. Genomics, 2004, vol. 272, pp. 363-378.

4. Tamehiro N., Okamoto-Hosoya Y., Okamoto S., Ubukata M., Hamada M., Naganawa H., Ochi K. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob. Agents Chemother., 2002, vol. 46, pp. 315-320.

5. Zimmerman S.B., Schwartz C.D., Monaghan R.L., Pelak B.A., Weissberger B. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. I. Production, taxonomy and antibacterial activity. J. Antibiot., 1987, vol. 40, pp. 1677-1681.

6. Wilson K.E., Flor J.E., Schwartz R.E., Joshua H., Smith J.L., Pelak B.A., Liesch J.M., Hensens O.D. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II. Isolation and physic-chemical characterization. J. Antibiot., 1987, vol. 40, pp. 1682-1691.

7. Patel P.S., Huang S., Fisher S., Pirnik D., Aklonis C., Dean L., Meyers E., Fernandes P., Mayerl F. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity. J. Antibiot., 1995, vol. 48, pp. 997-1003.

8. Romero-Tabarez M., Jansen R., Sylla M., Lunsdorf H., Häußler S., Santosa D.A., Timmis K.N., Molinari G. 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrob. Agents Chemother., 2006, vol. 50, no. 5, pp. 1701-1709.

9. Egorov E.S., Baranova I.N. Bakteriociny: obrazovanie svoystva, primenenie. Antibiotiki i himioterapiya, 1999, № 6, c. 33-40. [Egorov E.S., Baranova I.N. Bacteriocins: production, properties, application. Antibiotiki I khimioterapiya, 1999, no. 6, pp. 33-40. (In Russ.)]

10. Rea M.C., Ross R.P., Cotter P.D., Hill C. Classification of bacteriocins from gram-positive bacteria// Prokaryotic Antimicrobial Peptides: From Genes to Applications. / Eds. Drider D., Rebuffat S. Springer Science+Business Media LLC, 2011, pp. 29-53.

11. Abriouel H., Franz C.M.A.P., Ben Omar N., Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev., 2011, vol. 35, pp. 201-232.

12. Severinov K., Semenova E., Kazakov T. Class I microcins: Their structures activities, and mechanisms of resistance. Prokaryotic Antimicrobial Peptides: From Genes to Applications. / Eds. Drider D., Rebuffat S. New York: Springer, 2011, pp. 289-308.

13. Ross R.P., Morgan S., Hill C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol., 2002, vol. 79, pp. 3-16.

14. Yeo I., Lee N.K., Hahm Y.T. Genome sequencing of Bacillus subtilis SC-8, antagonistic to the Bacillus cereus group, isolated from traditional korean fermented-soybean food. J. Bacteriol., 2012, vol. 194, no. 2, pp. 536-537.

15. Thimon L., Peypoux F., Wallach J., Michel G. Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastruture of yeast cell. FEMS Microbiol. Lett., 1995, vol. 128, pp. 101-106.

16. Tsuge K., Akiyama T., Shoda M. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriol., 2001, vol. 183, pp. 6265-6273.

17. Steller S., Vollenbroich D., Leenders F., Stein T., Conrad B., Hofemeister J., Jacques P., Thonart P., Vater J. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem. Biol., 1999, vol. 6, pp. 31-41.

18. Vanittanakom N., Loeffer W., Koch U., Jung G. Fengycin - A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot., 1986, vol. 39, pp. 888-901.

19. Magnet-Dana R., Thimon L., Peypoux F., Ptak M. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie, 1992, vol. 74, pp. 1047-1051.

20. Bais H.P., Fall R., Vivanco J.M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol., 2004, vol. 134, no. 1, pp. 307-319.

21. Raaijmakers J.M., De Bruijn I., Nybroe O., Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbio.l Rev., 2010, vol. 34, no. 6, pp. 1037-1062.

22. Fredenhagen A., Angst C., Peter H.H. Digestion of rhizocticins to (Z)-L-2-amino-5-phosphono-3-pentenoic acid: revision of the absolute configuration of plumbemycins A and B. J. Antibiot., 1995, vol. 48, no. 9, pp. 1043-1045.


Login or Create
* Forgot password?