LIPOXYGENASE INHIBITORS ATTENUATE CA2+ RESPONSES INDUCED BY TRIFLUOPERAZINE IN PERITONEAL MACROPHAGES
Abstract and keywords
Abstract (English):
Trifluoperazine (TFP) belongs to the first antipsychotics generation widely used in treatment of mental diseases. A multifaceted influence of TFP on intracellular processes has been revealed. Earlier we have shown that TFP increases intracellular Ca2+ concentration, [Ca2+]i, causing Ca2+ mobilization from intracellular Ca2+ stores and subsequent store-dependent Ca2+ entry from external medium, in rat peritoneal macrophages. However, the mechanisms by which TFP causes Ca2+ responses are not fully understood. In activation and functioning of immune cells, including macrophages, the arachidonic acid metabolism cascade plays an important role. In macrophages arachidonic acid is oxidized predominantly by cyclooxygenases and lipoxygenases. Therefore, it was useful to investigate the involvement of lipoxygenase pathway of arachidonic acid metabolism in TFP effect on [Ca2+]i in macrophages. Using Fura-2AM microfluorimetry, we have found that selective blockers of 5-lipoxygenases (caffeic acid and zileuton) and 12-lipoxygenases (baicalein) significantly suppress TFP-induced Ca2+ responses in rat peritoneal macrophages. Nordihydroguaretic acid, which inhibits all isoforms of lipoxygenases, almost completely suppresses TFP-induced Ca2+ responses. The data obtained suggest the involvement of lipoxygenases and (or) lipoxygenase pathway products in TFP effect on [Ca2+]i in macrophages. The participation of arachidonic acid cascade enzymes in TFP effect on [Ca2+]i can be explained by the model of embedding of amphiphilic antipsychotic agents, including phenothiazine neuroleptics, in the membrane inner monolayer. This can lead to a change in membrane fluidity and functioning of membrane-bound enzymes, such as phospholipase A2, which triggers arachidonic acid cascade. In turn, the enzymes and/or products of arachidonic acid metabolism are involved in the formation of TFP-induced Ca2+ responses.

Keywords:
trifluoperazine, lipoxygenases, intracellular Ca2+ concentration, peritoneal macrophages
Text
Text (PDF): Read Download
References

1. Dilsaver S.C. Antipsychotic agents: a review. Am. Fam. Phys., 1993, vol. 47, pp. 199-204.

2. Sudeshna G., Parimal K. Multiple non-psychiatric effects of phenothiazines: a review. Europ. J. Pharmacol., 2010, vol. 648, pp. 6-14. DOI:https://doi.org/10.1016/j.ejphar.2010.08.045

3. Oruch R., Lund A., Pryme I.F., Holmsen H. An intercalation mechanism as a mode of action exerted by psychotropic drugs: results of altered phospholipid substrate availabilities in membranes? J. Chem. Biol., 2010, vol. 3, pp. 67-88. DOI:https://doi.org/10.1007/s12154-009-0034-6

4. Milenina L.S., Kruteckaya Z.I., Naumova A.A., Kruteckaya N.I., Butov S.N., Antonov V.G. Vliyanie trifluoperazina na vnutrikletochnuyu koncentraciyu Sa2+ v makrofagah. V sb.: «Receptory i vnutrikletochnaya signalizaciya», Puschino, 2017, t. 1, 451 c., s. 188-192. @@Milenina L.S., Krutetskaya Z.I., Naumova A.A., Krutetskaya N.I., Butov S.N., Antonov V.G. The effect of trifluoperazine on intracellular Ca2+ concentration in macrophages. In: Receptors and Intracellular Signaling, Pushchino, 2017, vol. 1, 451 p., pp. 188-192. (In Russ.)

5. Milenina L.S., Kruteckaya Z.I., Naumova A.A., Butov S.N., Kruteckaya N.I., Antonov V.G. Ingibitory metabolizma arahidonovoy kisloty podavlyayut Sa2+otvety, vyzyvaemye trifluoperazinom, v makrofagah. Citologiya, 2018, t. 60, № 2, s. 116-121. @@Milenina L.S., Krutetskaya Z.I., Naumova A.A., Butov S.N., Krutetskaya N.I., Antonov V.G. Arachidonic acid metabolism inhibitors attenuate Ca2+ responses induced by trifluoperazine in macrophages. Cell Tissue Biol., 2018, vol. 12, no. 4, pp. 315-322. (In Russ.)

6. Kruteckaya Z.I., Milenina L.S., Naumova A.A., Butov S.N., Antonov V.G., Nozdrachev A.D. Vliyanie hlorpromazina na vnutrikletochnuyu koncentraciyu Sa2+ v makrofagah. Dokl. Akad. Nauk, 2017, t. 474, № 1, s. 116-118. @@Krutetskaya Z.I., Milenina L.S., Naumova A.A., Butov S.N., Antonov V.G., Nozdrachev A.D. The effect of chlorpromazine on intracellular Ca2+ concentration in macrophages. Dokl. Bioch. Biophys., 2017, vol. 474, pp. 162-164. (In Russ.)

7. Needleman P., Turk J., Jacksick B.A., Morrison A.R., Lefkowith J.B. Arachidonic acid metabolism. Annu. Rev. Biochem., 1986, vol. 55, pp. 69-102.

8. Brown G.P., Monick M.M., Hunninghake G.W. Human alveolar macrophage arachidonic acid metabolism. Am. J. Physiol. Cell Physiol., 1988, vol. 254, pp. C809-C815.

9. Walenga R.W., Opas E.E., Feinstein M. B. Differential effects of calmodulin antagonists on phospholipases A2 and C in thrombin-stimulated platelets. J. Biol. Chem., 1981, vol. 256, pp. 12523-12528.

10. Oruch R., Pryme I.F., Holmsen H. Effects of psychotropic drugs on the thrombin-induced liberation of arachidonate in human platelets. Saudi Med. J., 2008, vol. 29, pp. 1397-1407.

11. Kuhn H., Banthiya S., van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta, 2015, vol. 1851, pp. 308-330. DOI:https://doi.org/10.1016/j.bbalip.2014.10.002.

12. Krönke G., Katzenbeisser J., Uderhardt S., Zaiss M.M., Scholtysek C., Schabbauer G., Zarbock A., Koenders C., Axmann R., Zwerina J., Baenckler H.W., van den Berg W., Voll R.E., Kuhn H., Joosten L.A.B., Schett G. 12/15-Lipoxygenase counteracts inflammation and tissue damage in arthritis. J. Immunol., 2009, vol. 183, pp. 3383-3389. DOI:https://doi.org/10.4049/jimmunol.0900327

13. Grynkiewicz G., Poenie M., Tsien R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 1985, vol. 260, pp. 3440-3450.

14. Xie Q., Zhang Y., Zhai C., Bonanno J.A. Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J. Biol. Chem., 2002, vol. 277, pp. 16559-16566, DOI:https://doi.org/10.1074/jbc.M109518200

15. Chung T.-W., Moon S.-K., Chang Y.-C., Ko J.-H., Lee Y.-C., Cho G., Kim S.-H., Kim J.-G., Kim C.-H. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. J. Fed. Amer. Soc. Exp. Biol., 2004, vol. 18, pp. 1670-1681. DOI:https://doi.org/10.1096/fj.04-2126com

16. Wenzel S. E., Kamada A. K. Zileuton - the first 5-lipoxygenase inhibitor for the treatment of asthma. Ann. Pharmacother., 1996, vol. 30, pp. 858-864. DOI:https://doi.org/10.1177/106002809603000725

17. Van Leyen K., Kim H.Y., Lee S.-R., Jin G., Arai K., Lo E.H. Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke, 2006, vol. 37, pp. 3014-3018. DOI:https://doi.org/10.1161/01.STR.0000249004.25444.a5

18. Salary H., Braquet P. Borgeat P.Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid and BW755C on the metabolism of arachidonic acid in human leukocytes and platelets. Prostaglandins and Leukotrienes, and Medicine, 1984, vol. 13, pp. 53-60. DOI:https://doi.org/10.1016/0262-1746(84)90102-1

19. Glitsch M.D., Bakowski D., Parekh A.B. Effects of inhibitors of the lipo-oxygenase family of enzymes on the store-operated calcium current ICRAC in rat basophilic leukaemia cells. J. Physiol., 2002, vol. 539.1, pp. 93-106. DOI:https://doi.org/10.1013/jphysiol.2001.012826

20. Jaszczyszyn A., Gasiorowski K., Swiatek P., Malinka W., Cieslik-Boczula K., Petrus J., Czarnik-Matusewicz B. Chemical structure of phenothiazines and their biological activity. Pharmacol. Rep., 2012, vol. 64, pp. 16-23.

21. Khanapure S.P., Garvey D.S., Janero D.R., Letts G.L. Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr. Top. Med. Chem., 2007, vol. 7, pp. 311-340. DOI:https://doi.org/10.2174/156802607779941314

22. Montuschi P. Role of leukotrienes and leukotriene modifiers in asthma. Pharmaceuticals, 2010, vol. 3, pp. 1792-1811. DOI:https://doi.org/10.3390/ph3061792

23. Berger W., De Chandt M.T.M., Cairns C.B. Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease.Int. J. Clin. Pract., 2007, vol. 61, pp. 663-676. DOI:https://doi.org/10.1111/j.1742-1241.2007.01320.x

24. Zouboulis C.C. Zileuton, a new efficient and safe systemic anti-acne drug. Dermato-Endocrinol., 2009, vol. 1, pp. 188-192. DOI:https://doi.org/10.4161/derm.1.3.8368

25. Manda G., Rojo A.I., Martínez-Klimova E., Pedraza-Chaverri J., Cuadrado A. Nordihydroguaiaretic acid: from herbal medicine to clinical development for cancer and chronic diseases. Front. Pharmacol., 2020, vol. 11, 151. DOI:https://doi.org/10.3389/fphar.2020.00151

26. Donald G., Kathleen Hertzer K., Eibl G. Baicalein - an intriguing therapeutic phytochemical in pancreatic cancer. Curr Drug Targets, 2012, vol. 13, pp. 1772-1776. DOI:https://doi.org/10.2174/138945012804545470

27. Espíndola K.M.M., Ferreira G.R., Narvaez L.E.M., Rosario A.C.R.S., da Silva A.H.M., Silva A.G.B., Vieira A.P.O., Monteiro M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol., 2019, vol. 9, 541. DOI:https://doi.org/10.3389/fonc.2019.00541


Login or Create
* Forgot password?