SELF-ORGANIZATION IN VIRUSES FORMATION: THE NANO-PROCESS OF ASSEMBLING HEADS (CAPSIDS) AND LAYING DNA ON THE EXAMPLE OF TAILED BACTERIOPHAGES (LAMBDA, T4)
Abstract and keywords
Abstract (English):
The relevance of the problem. The widespread and uncontrolled use of antibacterial drugs not only in medicine, but also in agriculture, animal husbandry, and the food industry has led to the spread of multi-resistant strains resistant to the most common antibacterial drugs. In search of alternative strategies for the prevention and control of bacterial infection, attention is increasingly being paid to bacteriophage (phage) therapy. With a wide range of genetic engineering capabilities, these bacterial viruses can be modified to achieve precise control and detection of bacteria and thus serve as a new source of antimicrobial agents. In addition to being used in antimicrobial therapy, phages can also be used as transport systems for drug delivery, as vaccines, or can be used for nanosembly of new materials, since phages themselves, their fragments and components are nanoobjects and functioning nanomachines, the assembly process of which is extremely relevant. The purpose of this article is: to analyze and summarize the most important information on the topic of bacteriophages, methods of their determination and effective transformation in modern science, to evaluate the achievements of modern research in the process of assembling heads (capsids) and laying intracapsid DNA in caudate bacteriophages (phage lambda and phage T4), the production of genetically modified phages and a review of the main prospects for the development of this direction.

Keywords:
viruses, bacteriophages, self-assembly of capsids, DNA stacking, nanoobjects, phage therapy
Text
Publication text (PDF): Read Download
References

1. Twort F.W. An investigation on the nature of ultra-microscopic viruses. The Lancet, 1915, vol. 186, no. 4814, pp. 1241-1243.

2. d’Herelle F. Sur un microbe invisible antagoniste des bacilles dysenteriques. CR Acad. Sci., 1917, Paris, vol. 165, pp. 373-375.

3. Letarov A.V., Golomidova A.K., Tarasyan K.K. Ecological basis for rational phage therapy. Acta Naturae, 2010, vol. 2, no. 1, pp. 60-72.

4. Summers W.C. The strange history of phage therapy. Bacteriophage, 2012, vol. 2, no. 2, pp. 130-133, doi:https://doi.org/10.4161/bact.20757.

5. Calendar R. The bacteriophages. Springer Science & Business Media., 2012, vol. 1, 596 p.

6. Duckworth D.H. History and basic properties of bacterial viruses. In Phage ecology, 1987, Singapore: John Wiley and Sons, pp. 1-44.

7. Weinbauer M.G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev., 2004, vol. 28, no. 2, pp. 127-181, doi:https://doi.org/10.1016/j.femsre.2003.08.001.

8. Ackermann H.W. 5500 Phages examined in the electron microscope. Arch. Virol., 2007, vol. 152, no. 2, pp. 227-243, doi:https://doi.org/10.1007/s00705-006-0849-1.

9. Lwoff A. Lysogeny. Bacterid. Rev., 1953, vol. 17, pp. 269-237.

10. Lederberg E.M. Lysogenicity in Escherichia coli strain K-12, Microbial Genetics Bulletin, 1950, vol. 1.

11. Totsky V.N. Genetics. Odessa: Astroprint, 2002 (In Russ.).

12. Ptashne M. Gene switching: Regulation of gene activity and the lambda phage. Moscow: Mir, 1988 (In Russ.).

13. Fokine A., Chipman P.R., Leiman, P.G., Mesyanzhinov V.V., Rao V.B., Rossmann M.G. Molecular architecture of the prolate head of bacteriophage T4. Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 6003-6008.

14. Caspar D.L., Klug A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol., 1962, p. 27.

15. Driedonks R.A., Engel A., Ten-Heggeler B., Driel V. Gene 20 product of bacteriophage T4 its purification and structure. J. Mol. Biol., vol. 152, pp. 641-662.

16. Fokine A., Leiman P.G., Shneider M.M., Ahvazi B., Boeshans K.M., Steven A.C., Black L.W., Mesyanzhinov V.V., Rossmann M.G. Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 7163-7168.

17. Rao V.B., Black L.W. Structure and assembly of bacteriophage T4 head. Virol. J., 2010, vol. 7.

18. Ishii T., Yanagida M. The two dispensable structural proteins (soc and hoc) of the T4 phage capsid; their purification and properties, isolation and characterization of the defective mutants, and their binding with the defective heads in vitro. J. Mol. Biol., 1977, vol. 109.

19. Ishii T., Yamaguchi Y., Yanagida M. Binding of the structural protein soc to the head shell of bacteriophage T4. J. Mol. Biol., 1978, vol. 120, pp. 533-544.

20. Cerritelli M.E., Cheng N., Rosenberg A.H., McPherson C.E., Booy F.P., and Steven A.C. Encapsidated conformation of bacteriophage T7 DNA. Cell, 1997, vol. 91, pp. 271-280.

21. Bair C.L., Black L.W. A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. J. Mol. Biol., 2007, vol. 366, pp. 768-778.

22. Bair C.L., Rifat D., Black L.W. Exclusion of glucosyl- hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*. J. Mol. Biol., 2007, vol. 366, pp. 779-789.

23. Wang G.R., Vianelli A., Goldberg, E.B. Bacteriophage T4 self- assembly: in vitro reconstitution of recombinant gp2 into infectious phage. J. Bacteriol., 2000, vol. 182, pp. 672-679.

24. Yu T.-Y., Schaefer J. REDOR NMR characterization of DNA packaging in bacteriophage T4. J. Mol. Biol., 2008, vol. 382, pp. 1031-1042.

25. Letarov A. V. Modern Concepts of Bacteriophage Biology. DeLi, Moscow, 2019.

26. Fokine A., Rossmann M.G. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage, 2014, vol. 4, e28281.

27. Leiman P.G., Arisaka F., van Raaij M.J., Kostyuchenko V.A., Aksyuk A.A., Kanamaru S., Rossmann M.G. Morphogenesis of the T4 tail and tail fibers. Virol. J., 2010, vol. 7, pp. 355, doi:https://doi.org/10.1186/1743-422X-7-355.

28. Young R. Phage lysis: three steps, three choices, one outcome. J. Microbiol., 2014, vol. 52, pp. 243-258, doi:https://doi.org/10.1007/s12275- 014-4087 -z.

29. Chaikeeratisak V., Nguyen K., Egan M.E., Erb M.L., Vavilina A., Pogliano J. The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. Cell Rep., 2017, vol. 20, pp. 1563-1571, doi:https://doi.org/10.1016/j.celrep.2017.07.064.

30. Sun S., Kondabagil K., Gentz P.M., Rossmann M.G., Rao V.B. The structure of the ATPase that powers DNA packaging into bacteriophage T4 procapsids. Mol. Cell., 2007, vol. 25, pp. 943-949.

31. Taylor N.M.I., van Raaij M.J., Leiman P.G. Contractile injection systems of bacteriophages and related systems. Mol. Microbiol., 2018, vol. 108, pp. 6-15, doi:https://doi.org/10.1111/mmi.13921.

32. Taylor N.M., Prokhorov N.S., Guerrero-Ferreira R.C., Shneider M.M., Browning C., Goldie K.N., Stahlberg H., Leiman P.G. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature, 2016, vol. 533, pp. 346-52, doi:https://doi.org/10.1038/nature17971. PubMed PMID: 27193680.

33. Davidson A.R., Cardarelli L., Pell L.G., Radford D.R., Maxwell K.L. Long noncontractile tail machines of bacteriophages. Adv. Exp. Med. Biol., 2012, vol. 726, pp. 115-142, doi:https://doi.org/10.1007/978-1-4614-0980-9_6.

34. Casjens S.R., Molineux I.J. Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. Adv. Exp. Med. Biol., 2012, vol. 726, pp. 143-179, doi:https://doi.org/10.1007/978-1-4614-0980-9_7.

35. Duda R.L., Teschke C.M. The amazing HK97 fold: versatile results of modest differences. Curr. Opin. Virol., 2019, vol. 36, pp. 9-16, doi:https://doi.org/10.1016/j.coviro.2019.02.001.

36. Cue D., Feiss M. Bacteriophage λ DNA packaging: DNA site requirements for termination and processivity. J. Mol Biol., 2001, vol. 311, pp. 233-240.

37. Feiss M., Kobayashi I., Widner W. Separate sites for binding and nicking of bacteriophage lambda DNA by terminase. Proc Natl Acad Sci USA, 1983, vol. 80, no. 4, pp. 955-959.

38. Feiss M., Widner W., Miller G. et al. Structure of the bacteriophage lambda cohesive end site: Location of the sites of terminase binding (cosB) and nicking (cosN). Gene., 1983, vol. 24, no. 2-3, pp. 207-18.

39. Hohn B. DNA sequences necessary for packaging of bacteriophage λ DNA. Proc Nat Acad Sci USA., 1983, vol. 80, pp. 7456-7460.

40. Miwa T., Matsubara K. Lambda phage DNA sequences affecting the packaging process. Gene., 1983, vol. 24, pp. 199-206.

41. Cue D., Feiss M. A site required for termination of packaging of the phage lambda chromosome. Proc Natl Acad Sci USA., 1993, vol. 90, no. 20, pp. 9290-9294.

42. Laglaguano J.C., Cordova A.V. Bacteriophages applications in agriculture. Bionatura Conference Series, Bionatura Latin American Journal of Biotechnology and Life Sciences, 2019, vol 2, no. 1, doi:https://doi.org/10.21931/RB/CS/2019.02.01.24.

43. Roach D.R., Donovan D.M. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage, 2015, vol. 5, no. 3, doi:https://doi.org/10.1080/21597081.2015.1062590

44. Schmelcher M., Donovan D.M., Loessner M.J. Bacteriophage endolysins as novel antimicrobials. Future Microbiol., 2012, vol. 7, no. 10, pp. 1147-1171.

45. Zhu J. et al. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nature Communications, 2023, vol. 14, p. 2928, doi:https://doi.org/10.1038/s41467-023-38364-1.


Login or Create
* Forgot password?